
 VIVA-CONVERGE Volume 1 Issue 2 2017-18

When designing for security, the operating environment

needs to determine the degree of robustness required. A

security architecture must include not only the target device,

but all endpoints and users within the overall system. While

there are serial numbers, MAC addresses, white lists, and

black lists - these designs are not foolproof. Most embedded

hacks are accomplished by monitoring network traffic to

reverse engineer commands, then replaying the same or

modified version from somewhere else.

In the IoT world, everyone is a stranger until proven

otherwise. Even private networks are subject to data

breaches and are just as vulnerable as the Internet. Given no

network is secure, all remote endpoints must be

authenticated before commands and data can be trusted.

Transitioning from people to computers, the equivalent of a

secret word is the key. Designs using secret keys may be

feasible in smaller environments, but as the number of

devices grow, so does the complexity and cost to protect

those keys. If a secret key is exposed due to compromise of

a single device, then every other system in the environment

is vulnerable and cannot distinguish a stranger from a trusted

system.

User names and passwords help dynamically generate

unique secret keys, which are entered upon demand and

don’t need to be stored in nonvolatile memory, reducing the

risk of compromise. While this works in some environments,

many products don’t have the concept of users and must

operate securely immediately when powered on. These

environments require shared secret keys between both end-

points for authentication and encryption. But how do the

keys get in the system? In military environments, special

handheld computers called key fill devices are used to

keys so they are never exposed. Key fill devices and key

management systems protect keys during distribution until

stored safely within a device’s security boundary.

Public key encryption simplifies the complexity of shared

keys by providing each endpoint with a single unique

asymmetric key pair to use for encryption and

authentication. Best practice security never uses the same

key for both. If an endpoint is compromised and private key

exposed, the vulnerability is limited to just that system.

Asymmetric cryptography allows endpoints to communicate

securely without needing to pre-share keys. However, how

does a device know if it’s securely communicating to the

right endpoint? Certificates are used to prevent man-in-the-

middle attacks during the exchange of public keys and prove

the identity of a remote endpoint. In most basic form, a

certificate consists of metadata including name, serial

number, expiration data, etc; bound to the public key by a

digital signature from a Certificate Authority (CA). Using

mutual authentication, devices will never attempt to process

incoming commands unless coming from a valid source.

Company IoT services are also protected because they too

only respond to properly credentialed devices.

When two systems exchange certificates, public keys can be

trusted if they are both digitally signed by the same CA.

Since both systems trust the CA, that trust can be extended to

the remote system assuming private keys are not

compromised. Once authenticated and trusted, software can

read the certificate to determine what action to take, or

system features to make available. This allows devices to be

triggered to enter debug mode for a limited time based on the

training level of the technician.

Certificate management

Several certificate generation and management designs exist

to help embedded system developers incorporate digital

identities into their products. The IEEE 802.1ar specification

is increasingly used in embedded products, like networking

and industrial control systems. 802.1ar addresses the

management and use of a single iDevID and multiple

LDevIDs certificates. The iDevID certificate is also known

as the “birth certificate” - used to identify the manufacturer

of the system, board, or component. This is typically the first

certificate on the system and generated during manufactur-

ing. The purpose of LDevIDs varies depending on the

environment. For example, in one product an LDevID certif-

icate may be created to protect customer profiles and data. In

another example, a board may be sold to multiple

PROTECTION PROVIDED BY DIGITAL SIGNATURES AND CERTIFICATES FOR

EMBEDDED SYSTEMS

 VIVA Institute of Technology, Virar(E.) 23

 VIVA-CONVERGE Volume 1 Issue 2 2017-18

An LDevID certificate may be generated for each integrator

so they can communicate securely within their own local

enclaves and protect their data without risk of compromise.

When incorporating certificates into an embedded design,

developers and manufacturers must take the following into

consideration:

Programming the Root CA certificate into immutable

memory – keeps an attacker from replacing to something

else

Asymmetric key pair generation – Private keys should

never be exposed outside of the device, assuming proper

random number generation is feasible

Private key protection – Spoofing attacks are possible if

private keys are compromised

Sending of certificate signing requests to CA system – If

using a hosted CA system, what is the impact to produc-

tion due to a network outage?

Receipt of certificate and protected storage – How are

certificates and keys protected on the device?

Loading initial revocation lists – Relates to the entire in-

ventory management process and tracking of creden-

tialed systems and RMAs.

An increasing number of product developers are building

their own public key infrastructures (PKI) and generating

certificates right on the assembly line, where private keys

can remain inside each device and production is unaffected

by Internet outages. The Device Lifecycle Management

(DLM) System, developed by INTEGRITY Security

Services, protects a company’s CA keys from IT networks

susceptible to data breach at remote and third-party

manufacturing sites for high availability certificate

generation. DLM supports developers wanting to

incorporate certificates, tailored to their design and supply

chain, without having to build and support their own PKI.

The most important consideration in the discussion of

authentication is how are we able to trust others if we can’t

trust ourselves? Unfortunately, this isn’t a philosophical

question. If system software is compromised, then the chain

of trust is broken from the beginning and nothing can be

guaranteed. Hacked software can skip verification, accept

any certificate, and modify message contents. Keys can be

compromised if not properly protected and used to attack

other devices by manipulating commands and data. Back-

doors can be opened to collect and send data, making any

Before an embedded system can trust itself to authenticate

remote endpoints, it must check that software has not been

modified. This is accomplished through a process called

secure boot, where system software is verified before

executed. At each power on, secure boot checks the

authenticity of each software layer before allowing it to

execute. This ensures software is not corrupted and comes

from a valid source. A component is never executed unless

proven trustworthy.

Hashes and checksums only verify the integrity of software,

not authenticity. As long as an attacker modifies the hash

along with the code, malicious software can still execute

undetected. Authentication comes from digitally signing the

hash using an asymmetric key. A company’s security

infrastructure protects the private key and digitally signs the

release software. The corresponding public key is

programmed into the device during manufacturing and used

during verification. Now, if an attacker changes both code

and hash, they still can’t update the digital signature without

the corresponding private key regenerating the digital

signature. INTEGRITY Security Services works with

companies in all industries to deploy secure boot solutions

including digital signing infrastructures, with zero exposure

protection of private keys and integration into everyday

software build processes.

The security architecture of today’s networked IoT products

must account for more unknowns than ever before. With

every new device added to the network, comes an additional

unknown threat and risk of conflict causing support and

development costs. These unknowns are mitigated by

controlling communication to only trusted endpoints through

authentication. Starting with hardware to verify software

before extending remotely, the chain of trust is preserved.

“A security architecture must include not only the target

device, but all endpoints and users within the overall

system.”

 TE EXTC

 Omkar Bhushankar

 Soham Naik

 Sumit Mondal

 Aman Takshak

PROTECTION PROVIDED BY DIGITAL SIGNATURES AND CERTIFICATES FOR

EMBEDDED SYSTEMS

 VIVA Institute of Technology, Virar(E.) 24

