UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Electrical Engineering

Third Year with Effect from AY 2021-22

(REV- 2019 ‘C’ Scheme) from Academic Year 2019 – 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)
Syllabus for Approval

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Heading</th>
<th>Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title of the Course</td>
<td>Third Year in Bachelor of Electrical Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Eligibility for Admission</td>
<td>After Passing Second Year Engineering as per the Ordinance 0.6243</td>
</tr>
<tr>
<td>3</td>
<td>Passing Marks</td>
<td>40%</td>
</tr>
<tr>
<td>4</td>
<td>Ordinances / Regulations (if any)</td>
<td>Ordinance 0.6243</td>
</tr>
<tr>
<td>5</td>
<td>No. of Years / Semesters</td>
<td>8 semesters</td>
</tr>
<tr>
<td>6</td>
<td>Level</td>
<td>Under Graduation</td>
</tr>
<tr>
<td>7</td>
<td>Pattern</td>
<td>Semester</td>
</tr>
<tr>
<td>8</td>
<td>Status</td>
<td>Revised</td>
</tr>
<tr>
<td>9</td>
<td>To be implemented from Academic Year</td>
<td>With effect from Academic Year: 2021-2022</td>
</tr>
</tbody>
</table>

Date: 29/6/2021

Dr. S. K. Ukarande
Associate Dean, Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar
Dean, Faculty of Science and Technology
University of Mumbai
Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner’s learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Third Year of Engineering from the academic year 2021-22. Subsequently this will be carried forward for Final Year Engineering in the academic year 2022-23.

Dr. S. K. Ukarande
Associate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar
Dean
Faculty of Science and Technology
University of Mumbai
Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of ‘C’ scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme ‘A' and ‘B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD’s/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande
Associate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar
Dean
Faculty of Science and Technology
University of Mumbai
Preface By BoS

The outcome based course curriculum for the undergraduate degree in Electrical Engineering in Rev.2019 ‘C’ scheme has been chalked out through the thoughtful discussions and deliberations of academic and industry experts. While devising the syllabus content framework, the correct balance between the fundamental / core topics with appropriate mix of topics from the state of the art technologies in electrical and allied domains is attempted. With the increased Industry-Institute interaction and internship programs, students are encouraged to explore the opportunity to improve communication skills, problem solving skill and good team management. These skills shall surely help them to meet the future challenges in their career.

The new course curriculum will also give ample opportunity to the students to work in cross discipline domains to gain the hands on experience through the project based learning facilitated through the various skill based labs, Mini projects, Course projects, Major projects etc. The increased number of department and institute level electives shall facilitate students with the truly choice based learning and skilling in a particular domains.

On behalf of the Board of Studies (BoS) in Electrical Engineering of the University of Mumbai, we seek the active participation from all the stake holders of the engineering education to meet the set outcomes and objectives for the Undergraduate Program in Electrical Engineering.

Board of Studies in Electrical Engineering

Dr. Sushil S. Thale : Chairman
Dr. B. R. Patil : Member
Dr. S. R. Deore : Member
Dr. B. B. Pimple : Member
Dr. Nandkishor Kinhekar : Member
Program Structure for Third Year Electrical Engineering

Semester V & VI

University Of Mumbai

(With Effect from 2021-2022)

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Pract.</td>
</tr>
<tr>
<td>EEC501</td>
<td>Electrical AC Machines II</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC502</td>
<td>Electrical Power System II</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC503</td>
<td>Control System</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC504</td>
<td>Electromagnetic Field and Wave</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEDO501X</td>
<td>Department Optional Course – 1</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEL501</td>
<td>Electrical AC Machines Lab II</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL502</td>
<td>Simulation Lab II</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL503</td>
<td>Control System Lab</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL504</td>
<td>Professional Communication and Ethics-II</td>
<td>--</td>
<td>2*+2</td>
</tr>
<tr>
<td>EEM501</td>
<td>Mini Project – 2 A</td>
<td>--</td>
<td>4$</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test1</td>
</tr>
<tr>
<td>EEC501</td>
<td>Electrical AC Machines-II</td>
<td>20</td>
</tr>
<tr>
<td>EEC502</td>
<td>Electrical Power System-II</td>
<td>20</td>
</tr>
<tr>
<td>EEC503</td>
<td>Control System</td>
<td>20</td>
</tr>
<tr>
<td>EEC504</td>
<td>Electromagnetic Field and Wave</td>
<td>20</td>
</tr>
<tr>
<td>EEDO501X</td>
<td>Department Optional Course – 1</td>
<td>20</td>
</tr>
<tr>
<td>EEL501</td>
<td>Electrical AC Machines Lab-II</td>
<td>--</td>
</tr>
<tr>
<td>EEL502</td>
<td>Simulation Lab II</td>
<td>--</td>
</tr>
<tr>
<td>EEL503</td>
<td>Control System Lab</td>
<td>--</td>
</tr>
<tr>
<td>EEL504</td>
<td>Professional Communication and Ethics-II</td>
<td>--</td>
</tr>
<tr>
<td>EEM501</td>
<td>Mini Project – 2 A</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>--</td>
</tr>
</tbody>
</table>

* Theory class to be conducted for full class

$ indicates work load of Learner (Not Faculty), for Mini Project; **Faculty Load:** 1 hour per week per four groups
Semester VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Pract./ Tut.</td>
</tr>
<tr>
<td>EEC601</td>
<td>Power System Protection & Switchgear</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC602</td>
<td>Microcontroller Applications</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC603</td>
<td>Control System Design</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEC604</td>
<td>Signals and Systems</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEDO601X</td>
<td>Department Optional Course – 2</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>EEL601</td>
<td>Power System Protection & Switchgear Lab</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL602</td>
<td>Microcontroller Applications Lab</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL603</td>
<td>Control System Design Lab</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>EEL604</td>
<td>SBL-III: Industrial Automation Lab</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>EEM601</td>
<td>Mini Project – 2 B</td>
<td>--</td>
<td>4$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test1</td>
</tr>
<tr>
<td>EEC601</td>
<td>Power System Protection & Switchgear</td>
<td></td>
</tr>
<tr>
<td>EEC602</td>
<td>Microcontroller Applications</td>
<td></td>
</tr>
<tr>
<td>EEC603</td>
<td>Control System Design</td>
<td></td>
</tr>
<tr>
<td>EEC604</td>
<td>Signals and Systems</td>
<td></td>
</tr>
<tr>
<td>EEDO601X</td>
<td>Department Optional Course – 2</td>
<td></td>
</tr>
<tr>
<td>EEL601</td>
<td>Power System Protection & Switchgear Lab</td>
<td>--</td>
</tr>
<tr>
<td>EEL602</td>
<td>Microcontroller Applications Lab</td>
<td>--</td>
</tr>
<tr>
<td>EEL603</td>
<td>Control System Design Lab</td>
<td>--</td>
</tr>
<tr>
<td>EEL604</td>
<td>SBL-III: Industrial Automation Lab</td>
<td>--</td>
</tr>
<tr>
<td>EEM601</td>
<td>Mini Project – 2 B</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

$ indicates work load of Learner (Not Faculty), for Mini Project; **Faculty Load**: 1 hour per week per four groups

University of Mumbai, Electrical Engineering, Rev. 2019 ‘C’ Scheme
Department Optional Courses

Sem. V: Department Optional Course – 1

- EEDO5011: Renewable Energy Sources
- EEDO5012: Advanced Power Electronics
- EEDO5013: Advanced Measurements and Instrumentation
- EEDO5014: Analog and Digital Communication

Sem. VI: Department Optional Course – 2

- EEDO6011: Special Electrical Machine
- EEDO6012: Electric Traction
- EEDO6013: High Voltage Engineering
- EEDO6014: Energy Storage
Course Objectives

To impart knowledge of operation and performance of synchronous machine

Course Outcomes

Upon successful completion of this course, the learner will be able:
1. To illustrate the working of synchronous generator
2. To determine the voltage regulation of synchronous generator by different methods
3. To analyze the parallel operation of synchronous generators.
4. To apply Blondel’s two reaction theory and solve simple problems on salient pole synchronous machines.
5. To analyze the operation of synchronous motor.
6. To derive the basic machine relations in dq0 variables for a synchronous machine without considering damper winding.

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synchronous Generator-Introduction: Construction, Operation, E.M.F. equation, Winding factors, Armature reaction</td>
<td>03</td>
</tr>
<tr>
<td>2</td>
<td>Analysis of Synchronous Generator: Phasor diagrams of cylindrical rotor synchronous generator, Voltage regulation, No load (OC) and SC test, Voltage regulation methods: EMF, MMF, ZPF, ASA.</td>
<td>06</td>
</tr>
<tr>
<td>3</td>
<td>Performance of Synchronous Generator: Power flow equations and maximum power conditions, Need for parallel operation and conditions, Effect of variation of field current and prime mover input on parallel operation, Concept of infinite bus, Effect of variation of field current on alternator connected to infinite bus, Numerical problems on parallel operation.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Salient pole synchronous generator: Concept of direct and quadrature reactance, Blondel’s two reaction theory, Phasor diagram of salient pole machine, Power angle characteristics, Synchronizing power and torque.</td>
<td>06</td>
</tr>
<tr>
<td>5</td>
<td>Synchronous Motor: Principle of operation, Self-starting methods, Phasor diagram, Load angle (δ), Power flow equations and maximum power conditions, Effect of change in excitation and mechanical power on performance of motor, V and Inverted V curves, Power factor control, Hunting, Excitation and power circles, Measurement of X_d and X_q by slip test, Starting against high torques.</td>
<td>09</td>
</tr>
<tr>
<td>6</td>
<td>Theory of Synchronous Machines: Ideal synchronous machine, Transformation to direct and quadrature axis variables, basic machine relations in dq0 variables (Primitive model of synchronous machine without considering damper winding), steady state analysis.</td>
<td>05</td>
</tr>
</tbody>
</table>
Text Books:
1. Bimbhra P.S., Electric Machinery, Khanna Publisher
2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher
3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication

Reference Books:
2. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications

Web Reference /Video Courses
2. NPTEL Course: Electrical Machines By Prof. G. Bhuvaneshwari, Dept. of Electrical Engineering, IIT-Delhi. Weblink:- https://nptel.ac.in/courses/108/102/108102146/
3. NPTEL Course: Electrical Machines-II By Prof. Tapas Kumar Bhattacharya, Dept. of Electrical Engg. ,IIT-Kharagpur. Weblink:- https://nptel.ac.in/courses/108/105/108105131/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
ELECTRICAL ENGINEERING - SEMESTER-V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC502</td>
<td>Electrical Power System II</td>
<td>Theory: 3, Pract./Tut.: --</td>
<td>Total: 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
</table>

Course Objectives
1. To understand different types of faults and their analysis.
2. To understand power system transients and insulation coordination.
3. To understand concept of corona.

Course outcomes
- Upon successful completion of this course, the learner will be able to:
 1. Understand and analyse unsymmetrical faults on transmission line
 2. Analyse symmetrical component and construct sequence network
 3. Analyse symmetrical faults on transmission lines.
 4. Understand power system transients
 5. Understand phenomenon of lightning and insulation coordination.
 6. Understand concept of corona.

Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Symmetrical Fault Analysis: Introduction to synchronous machine, basic construction, operation and equivalent circuit diagram, short circuit of synchronous machine: no load and loaded machine, transient on a transmission line, selection of Circuit breaker, short circuit MVA. Algorithm for SC studies, Z Bus formulation, symmetrical fault analysis using Z bus. (Numerical)</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Symmetrical Components: Introduction, Symmetrical component transformation, phase shift in star-delta transformers, sequence impedances and sequence network of transmission line, synchronous machine and transformer, power invariance, construction of sequence network of a power system. (Numerical)</td>
<td>08</td>
</tr>
<tr>
<td>3.</td>
<td>Unsymmetrical Fault Analysis: Types of unsymmetrical faults, Analysis of shunt type unsymmetrical faults: single line to ground (SLG) fault, line to line (L-L) fault, double line to ground (LLG) fault. (Numerical)</td>
<td>05</td>
</tr>
<tr>
<td>4.</td>
<td>Power System Transients: Review of transients in simple circuits, recovery transient due to removal of short circuit, arcing grounds, capacitance switching, current chopping phenomenon. Travelling waves on transmission lines, wave equation, reflection and refraction of waves, typical cases of line terminations, attenuation, Bewely lattice diagram. (Numerical)</td>
<td>06</td>
</tr>
<tr>
<td>5.</td>
<td>Lightning and Insulation Coordination: Lightning phenomenon, mechanism of Lightning stroke, shape of Lightning voltage wave, over voltages due to Lightning, Lightning protection problem, significance of tower footing resistance in relation to Lightning, insulator flashover and withstand voltages, protection against surges, surge arresters, surge capacitor, surge reactor and surge absorber, Lightning arrestors and protective characteristics, dynamic voltage rise and arrester rating.</td>
<td>06</td>
</tr>
<tr>
<td>Insulation Coordination:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. **Corona:**
Phenomenon of corona, Disruptive critical voltage, Visual critical voltage, corona loss, factors affecting corona loss, Radio interference due to corona, practical considerations of corona loss, corona in bundled conductor lines, corona ring. *(Numerical)*

Text Books:
3. Wadhwa C.L. *Electrical power system*, New Age International, 4e

Reference Books:
3. Stevenson and Grainger, *Modern power system analysis*, TMH publication, 1ed

Website Reference/ Video Courses:

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
Course Objectives

1. Modeling of electric, mechanical and electromechanical systems, using differential equations, transfer functions, block diagrams, and state variables.
2. To analyze and design system parameters to meet transient and steady state error performance specifications.
3. To learn time response analysis and demonstrate their knowledge to frequency response.
4. To learn stability analysis of system using Root locus, bode plot, polar plot, and Nyquist plot.

Course outcomes

Upon successful completion of this course, the learner will be able to:

1. Demonstrate an understanding of the fundamentals of (feedback) control systems.
2. Determine and use models of physical systems in forms suitable for use in the analysis and design of control systems.
3. Express and solve system equations in state-variable form (state variable models).
4. Determine the time and frequency-domain responses of first and second-order systems to step and sinusoidal (and to some extent, ramp) inputs.
5. Determine the (absolute) stability of a closed-loop control system.

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to Control System: Elements of control systems, concept of open loop and closed loop systems, Examples and application of open loop and closed loop systems. Concept of feedback and Automatic control, Effects of feedback</td>
<td>03</td>
</tr>
<tr>
<td>2.</td>
<td>Mathematical Model of Physical System Transfer function of electrical, mechanical (translational and rotational) System. Force Voltage and Force Current analogies. Transfer function model of AC & DC servomotor, potentiometer & tacho-generator. Block diagram reduction technique and signal flow graph, Mason’s rule, Signal flow graph of electrical network. Conversion of BDR to SFG and vice versa.</td>
<td>08</td>
</tr>
<tr>
<td>3.</td>
<td>Time Domain Analysis: Time domain analysis of a standard second order closed loop system. Concept of un-damped natural frequency, damping, overshoot, rise time and settling time. Dependence of time domain performance parameters on natural frequency and damping ratio. Step and Impulse response of first and second order systems. Effects of Pole and Zeros on transient response. Stability by pole location. Routh-Hurwitz criteria and applications. Error Analysis: Steady state errors in control systems due to step, ramp and parabolic inputs. Concepts of system types and error constants.</td>
<td>09</td>
</tr>
<tr>
<td>4.</td>
<td>State Variable Analysis Introduction to state variable, General state space representation, State space representation of Electrical and Mechanical systems. Conversion between state space and transfer function. Alternative representations in state space: (Phase variable, canonical, parallel & cascade). Similarity transformations, diagonalizing a system matrix. Laplace Transform solution of state equation, stability in state space</td>
<td>07</td>
</tr>
</tbody>
</table>
Root locus Techniques:
Definition and properties of root locus, rules for plotting root locus, stability analysis using root locus. **04**

Frequency Domain Analysis:
Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquist stability criterion. Gain margin and phase margin via Nyquist diagram and Bode plots. **08**

Text Books:
1. Control System Engineering by Norman Nise
2. Control System Engineering by Nagrath and Gopal, 5th to latest edition, Wiley Eastern
3. Modern Control System Engineering by K. Ogata, Prentice Hall

Reference Books:
1. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis S.N. Sheldon, Marcel Dekkar
2. Feedback control of Dynamic System, G.F. Franklin, Pearson higher education,
3. Control System Engineering, Shivanagruj s. Devi L., New Age International

Web Reference /Video Courses
1. **NPTEL Course:** Control Engineering By Prof. Ramkrishna Pasumarthy, Department of Electrical Engineering, IIT Madras - Web link - https://nptel.ac.in/courses/108/106/108106098/
2. **NPTEL Course:** Control Systems By Prof. C.S. Shankar Ram, Department of Design Engineering, IIT Madras - Web link - https://nptel.ac.in/courses/107/106/107106081/
3. **NPTEL Course:** Control Engineering By Prof. S.D. Agashe, Department of Electrical Engineering, IIT Bombay - Web link - https://nptel.ac.in/courses/108/101/108101037/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules
Course Objectives

1. Implement the knowledge of mathematics and physics.
2. Visualize Electric field.
3. Visualize magnetic field
4. Understand their application in electrical engineering
5. Analyse time varying electric and magnetic fields
6. Formulate electromagnetic wave equation

Course Outcomes

Upon successful completion of this course, the learner will be able to:

1. Apply knowledge of mathematics and physics in electrical engineering field.
2. Analyze electrostatic fields
3. Apply and analyse magneto-static fields.
4. Analyze the effect of material medium on electric and magnetic fields.
5. Analyze and formulate time varying electric and magnetic fields.
6. Formulate wave equations for Electromagnetic wave propagation in different media.

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vector Basics: Introduction to Vectors Calculus, Rectangular, Cylindrical and Spherical Co-ordinate System, Co-ordinate and vector transformation; Numericals on line, Surface and Volume Integrals.</td>
<td>05</td>
</tr>
<tr>
<td>2.</td>
<td>Static Electric Fields: Coulomb’s Law in Vector Form, Electric Field Intensity, Definition, Principle of Superposition, Electric Field due to point charges, Electric Field due to line charge (one and two conductor transmission lines), Electric Field due to an infinite uniformly charged sheet, Definition and physical interpretation of gradient, Electric scalar potential, Relationship between potential and electric field and its application on Surface voltage gradient on conductor. Numericals</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Static Magnetic Fields: The Biot-Savart’s Law in vector form, Magnetic Field intensity due to a finite and infinite wire carrying a current I, Magnetic field intensity on the axis of a circular loop carrying a current I, Ampere’s circuital law and its application on A solid cylindrical conductor and Infinitely long coaxial transmission line, Magnetic flux density, Definition and physical interpretation of Curl, The Lorentz force equation for a moving charge and its applications on Force on a wire carrying a current I placed in a magnetic field, Magnetic Vector Potential. Numericals</td>
<td>08</td>
</tr>
<tr>
<td>4.</td>
<td>Electric and Magnetic Fields in Materials: Poisson’s and Laplace’s equation, Electric Polarization, Electric current, Current density, Point form of ohm’s law, Continuity equation for current Numericals</td>
<td>06</td>
</tr>
</tbody>
</table>
5. **Time varying Electric and Magnetic Fields:**
 Faraday’s law, Maxwell’s Second Equation in integral form from Faraday’s Law, Equation expressed in point form, Displacement current, Ampere’s circuital law in integral form, Modified form of Ampere’s circuital law as Maxwell’s first equation in integral form, Equation expressed in point form, Maxwell’s four equations in integral form and differential form. **Numericals**

6. **Electromagnetic Wave theory:**
 Derivation of Wave Equation, Uniform Plane Waves, Maxwell’s equation in phasor form, Wave equation in phasor form. **(No numericals)**

Self Study Topics-
Potential due to electrical dipole and flux lines, Electric Flux Density, Gauss Law Definition and physical Significance of Divergence, Divergence theorem. Application on Estimation and control of electric stress, control of stress at an electrode edge.

Note: Students should be encouraged to study the self-study topics through text books, reference books, online courses /contents etc. The students’ performance on self-study contents be verified through MCQs and/or presentations or any other suitable methodology.

Text/Reference Books:

Website Reference/ Video Courses:
1. **NPTEL Course: Electromagnetic Fields** By Prof. Harishankar Ramachandran, Department of Electrical Engineering IIT Madras -Web link- https://nptel.ac.in/courses/108/106/108106098/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
Course Objectives

1. To review of conventional and non-conventional energy sources.
2. To give the students basic knowledge of solar thermal energy applications.
3. To give the students basic knowledge solar photovoltaic system.
4. To give the students basic knowledge of wind energy system.
5. To give the students basic knowledge of fuel cell system operation.
6. To give the students basic knowledge about other renewable energy sources.

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Introduction:</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>World’s and India’s production and reserves of commercial energy sources, energy alternatives, review of conventional and non-conventional energy sources. Statistic of net potential and current generation status of different energy alternatives.</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Solar Energy (Thermal Energy applications)</td>
<td>Solar thermal energy storage, Liquid flat plate collector, Solar air heater, concentrating collectors, thermal energy storage, solar pond</td>
<td>04</td>
</tr>
<tr>
<td>4.</td>
<td>Wind Energy:</td>
<td>Review of wind energy system and its components, types of wind turbines, characteristics; general concepts of aerofoils and aerodynamics, Wind data, Energy content of the wind, Power generation and control in wind energy systems, performance calculations of wind energy systems. Topologies of WES, WES with rectifier / inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines.</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell:</td>
<td>Other Sources:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Review of fuel cells and their principle of operation, Review of types of fuel cell and their performance comparison. Topologies of fuel cell power systems, applications.</td>
<td>Review of other nonconventional sources, their features and applications; Biomass, Tidal, Ocean, Thermal Electric Conversion, geothermal, Micro-hydro, Wave energy</td>
<td></td>
</tr>
</tbody>
</table>

Text / Reference Books:

Website Reference / Video Courses:

1. **NPTEL Course: Energy Resources & Technology** By Prof. S. Banerjee, IIT Kharagpur:- Web link: https://nptel.ac.in/courses/108/105/108105058/
2. **NPTEL Course: Non-Conventional Energy Systems** By Prof. L. Umanand, IISC Bangalore:- Web link: https://nptel.ac.in/courses/108/108108078/

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
ELECTRICAL ENGINEERING - SEMESTER-V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDOS012</td>
<td>Advanced Power Electronics</td>
<td>Theory 3 Pract./Tut. -- Theory 3 Pract./Tut.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1 Test 2 Avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Sem. Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam Duration (in Hrs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term Work Pract/Oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>EEDOS012</td>
<td>Advanced Power Electronics</td>
<td>20 20 20 80 3 - - 100</td>
</tr>
</tbody>
</table>

Course Objectives

1. To understand and analyse dc to dc conversion with isolation and hence to analyze different converter circuits for power conversion.
2. To understand the principles of design of magnetics such as high frequency transformers and inductors.
3. To keep abreast with the latest technologies and research going on in different areas related to power electronics.
4. To enhance the capability of problem solving skills.
5. To model the converter and design the controller for deeper understanding and detailed analysis.

Course outcomes

Upon successful completion of this course, the learner will be able to:

1. Analyze and select dc to dc power electronic converter topology for energy conversion applications.
2. Apply the basic concepts of magnetics to design high frequency transformers and Inductors for dc to dc converter topologies.
3. Analyze resonant power electronic converter topologies for high frequency applications.
4. Model and design controllers for the closed loop operation of dc to dc converters.
5. Apply the basic concepts of power electronics in the fields of AC and DC drives, power generation and energy conversion, industrial applications, extraction of energy from renewable sources.

Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Switching Voltage Regulators: Comparison of Linear voltage regulators and switching voltage regulators, Buck, Boost, Buck-Boost converters in Boundary and Discontinuous Conduction Mode (DCM), Isolated converters-unidirectional and bidirectional core excitation, Flyback converter, Forward converter, Full bridge converter (Numericals).</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>Design of DC to DC converters (Boost, Buck, BDC, Flyback only): Review of magnetic concepts, area product, design of inductor, design of high frequency transformer, numerical on design of inductor and transformer. Selection of capacitor, switching device and diode.</td>
<td>07</td>
</tr>
<tr>
<td>3.</td>
<td>Resonant converters: Drawbacks of switch-mode converters, basic resonant circuit concepts, Resonant switch converters - ZVS, ZCS, comparison, Basic concept of resonant dc link inverter and Applications of resonant converters.</td>
<td>04</td>
</tr>
<tr>
<td>4.</td>
<td>Modeling and control (Boost, Buck and Flyback only): State space model of various dc to dc converters, effect of ESR of capacitor and inductor resistance on the state space models, state space averaging technique, small signal analysis, transfer function, feedback control, compensator design, voltage mode control and current mode control, advantages of digital control.</td>
<td>08</td>
</tr>
</tbody>
</table>
5. **Multi-Level Inverter:** Need for multilevel inverters, Diode clamped, flying capacitor and cascaded MLI, Phase shifted and level shifted PWM techniques, introduction to SVM for three level inverter.

6. **Applications of power electronic converters:** Solar PV power conditioning unit, Bidirectional converter in battery charging, Resonant converters in induction heating, converters in residential applications, Application of Multi level inverter and three port DC to Dc converters.

Self study Topics: series and parallel load resonant converter.

Note: Students should be encouraged to study the self-study topics through text books, reference books, online courses /contents etc. The students’ performance on self-study contents be verified through MCQs and/or presentations or any other suitable methodology.

Books Recommended:

Text Books:

3. Simon Ang, Alejandro Oliva, “Power-Switching Converters”, Taylor and Francis group

Reference Books:

Website Reference/ Video Courses:

1. **NPTEL Course: Advance Power Electronics And Control** By Prof. Avik Bhattacharya, Dept. of Electrical Engineering, IIT Roorkee -Web link- https://nptel.ac.in/courses/108/107/108107128/
2. **NPTEL Course: Switched Mode Power Conversion** By Prof. L. Umanand and Prof. V. Ramanarayanan, IISC Bangalore -Web link- https://nptel.ac.in/courses/108/108/108108036/

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO5013</td>
<td>Advanced Measurements and Instrumentation</td>
<td>Theory 3, Pract./Tut. 3, Theory 3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EEDO5013</th>
<th>Advanced Measurements and Instrumentation</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1 20, Test 2 20, Avg 20</td>
</tr>
</tbody>
</table>

Course Objectives

1. To impart knowledge of architecture of the analog and digital measurement systems
2. To illustrate the working principle of electrical and non-electrical parameters measurements
3. To emphasize the principles and application of MEMS
4. To acquaint with digital data acquisition and virtual instrumentation system

Course outcomes

Upon successful completion of this course, the learner will be able to:

1. Classify, select and use various types of measurement sensors/transducers and instrumentation system suitable for the given application
2. Classify and select proper measuring instrument for various electrical and non-electrical parameters measurements
3. Illustrate the principles and application of MEMS in various fields of engineering.
4. Understand the working of digital data acquisition system
5. Understand the role of virtual instrumentation in various application domains

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Measurement and Instrumentation: Basics of measurement and instrumentation system: Measurement System Architecture: analog and digital systems; Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, constructional details, characteristics; Errors in measurements, Sensor Dynamics, Overview of Signal Conditioning: Analog and Digital Signal Conditioning</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensors and Transducers:</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>• Electrical Parameters measurement: Voltage and current, Instrument Transformers: Potential and current transformers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Displacement Measurement: Transducers for displacement, displacement measurement, potentiometer, LVDT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Strain Measurement: Theory of Strain Gauges, Bridge circuit, Strain gauge based load cells and torque sensors,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vibration and acceleration: Eddy current type, piezoelectric type; Accelerometer: Principle of working, practical accelerometers, strain gauge based and piezoelectric accelerometers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pressure Measurement: Elastic pressure transducers viz. Bourdon tubes, diaphragm, bellows and piezoelectric pressure sensors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flow Measurement: Bernoulli flowmeter, Ultrasonic flowmeter, Magnetic flow meter, Rotameter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Miscellaneous Sensors: Leak detector, Flame detector, Smoke detector, pH sensors, Conductivity sensors, Humidity sensors, Potentiometric Biosensors and Proximity sensors (Only basic principle of working)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>MEMS Technology:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction Nanotechnology and MEMS, MEMS design, and fabrication technology – Lithography, Etching, MEMS material, Bulk micromachining, Surface micromachining, Micro-actuator, electrostatic actuation, Micro-fluidics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Data Acquisition System:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interfacing transducers to Electronics Control and Measuring System. Instrumentation and Isolation Amplifier; Review of Computer-Controlled Test Systems. IEEE-488 GPIB Bus; Microcontroller based data acquisition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtual Instrumentation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Historical perspective, Block diagram and Architecture of Virtual Instruments Data-flow Techniques: Graphical programming in data flow, Comparison with conventional programming. VI Programming Techniques: VIs and sub-VIs, Loops and Charts, Arrays, Clusters and graphs, Case and sequence structures, Formula nodes, Use of Analysis Tools: Advanced analysis tools such as Fourier transforms, Power spectrum, Correlation methods, Windowing and filtering and their applications in signal and image processing, Motion Control.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Control System:</td>
<td></td>
</tr>
</tbody>
</table>

Books Recommended:

Text Books and Reference Books:

1. Introduction To Instrumentation And Measurements by Robert B. Northrop, CRC Press, 2014
2. Instrumentation for Process Measurements and Control, by Norman Andronson, Chilton Company
5. Instrumentation & Mechanical Measurements, A K Thayal
6. Control System Engineering by Nagrath U and Gopal M, Wiley Eastern Ltd,
7. Control systems by Dhanesh Manik, Cengage Learning

Website Reference / Video Courses:

1. NPTEL Course: Electrical Measurement And Electronic Instruments By Prof. Avishek Chatterjee, Dept. of Electrical Engineering, IIT Kharagpur:- Web link- https://nptel.ac.in/courses/108/105/108105153/
2. NPTEL Course: Industrial Instrumentation By Prof. Alok Barua, IIT Kharagpur:-Web link- https://nptel.ac.in/courses/108/105/108105064/
3. NPTEL Course: Industrial Instrumentation By Prof. Prof. S. Mukhopadhyay and Prof. S.Sen, IIT Kharagpur:- Web link- https://nptel.ac.in/courses/108/105/108105062/
Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
Course Objectives
1. To introduce the elements of communication systems, describe the generalized block diagram and the types of communication systems.
2. To make students understand analog and digital communication techniques
3. To teach data and pulse communication techniques
4. To introduce source and Error control coding

Course Outcomes
Upon successful completion of this course, the learner will be able to:
1. Understand theory of noise and the various methods involved in modulation techniques
2. Interpret the concepts in analog communication and differentiate various analog modulation techniques.
3. Develop the concepts in digital communication and various digital modulation techniques
4. Apply and integrate various pulsed modulation in digital communication systems.
5. Conversant in proposing suitable error controlling and correction algorithms.
6. Understand and incorporate the basic knowledge of optical fiber communication and Satellite communication.

Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to Communication Systems: Need and Importance of Communication, Elements of a Communication System, Types of communication systems (block diagram approach), Electromagnetic Spectrum used in communication, concept of bandwidth and power, Receiver characteristics, Need for modulation; Noise: Source of Noise - Types of noise, External Noise- Internal Noise – Noise Calculation, signal to noise ratio</td>
<td>05</td>
</tr>
<tr>
<td>2.</td>
<td>Analog Communication: Theory of Amplitude Modulation(DSBFC, DSBSC) - Evolution and Description of SSB Techniques, Independent sideband (ISB) and Vestigial Side Band (VSB) principles and transmitters; Theory of Frequency and Phase Modulation ; Comparison of various Analog Communication System (AM, FM, PM)</td>
<td>08</td>
</tr>
<tr>
<td>3.</td>
<td>Digital Communication: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), BPSK,QPSK, Quadrature Amplitude Modulation (QAM); Bandwidth, Efficiency Comparison of various Digital Communication System (ASK – FSK – PSK – QAM).</td>
<td>07</td>
</tr>
</tbody>
</table>
4. **Sampling Techniques:**
Sampling theorem, Nyquist criteria; Types of Sampling. Pulse modulation schemes – PAM, PPM and PWM generation and detection-Pulse code modulation. Conversion of PWM to PPM. Multiplexing Techniques - FDM and TDM; Delta modulation, adaptive delta modulation, principle, generation and detection; TDM and FDM basic concepts and block diagram; Applications of pulse communication

5. **Source and Error Control Coding:**
Enteropy -Source encoding theorem - Shannon fano coding - Huffman coding - mutual information – Channel capacity - Channel coding theorem; Error Control Coding - Linear block codes - Cyclic codes –Convolution codes - Viterbi decoding algorithm.

6. **Overview of other Types of Communication:**
Optical fiber communication; Satellite Communication; Bluetooth.

Text Books:-

Reference Books:

Website Reference / Video Courses:

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
ELECTRICAL ENGINEERING - SEMESTER-V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL501</td>
<td>Electrical AC Machines Lab-II</td>
<td>Theory: --, Pract./Tut.: 2, Theory: --</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory: Internal Assessment: Test 1, Test 2, Avg, End Sem. Exam, Exam Duration (in Hrs), Term Work, Pract & Oral, Total</td>
</tr>
<tr>
<td>EEL501</td>
<td>Electrical AC Machines Lab-II</td>
<td>---, ---, ---, ---, ---, 25, 25, 50</td>
</tr>
</tbody>
</table>

Course Objectives

To impart the knowledge on the following:
1. Practical understanding of Synchronous machines and their characteristics
2. Voltage regulation and Parallel operation of Synchronous generators

Course outcomes

Upon successful completion of this course, the learner will be able:
1. To analyze the operation of synchronous machines
2. To determine the voltage regulation of synchronous machines
3. To analyze the synchronization (or parallel operation) of synchronous machines
4. To determine the parameters of synchronous machines

Syllabus: Same as EEC501: Electrical AC Machines-II

Suggested List of Laboratory Experiments: Minimum six experiments need to be performed.

1. Constructional details of Synchronous machine
2. Voltage regulation of Alternator by Direct loading method
3. Voltage regulation of Alternator by EMF and MMF method
4. Voltage regulation of Alternator by ZPF and ASA method
5. Synchronization / Parallel operation of Alternator
6. Starting methods of Synchronous motor
7. Load test on Synchronous motor
8. ‘V’ and ‘inverted V’ curves of Synchronous machine
9. Determination of X_d and X_q of Synchronous machine by Slip test
10. Use of Synchronous motor as a Synchronous condenser
11. To determine positive sequence, negative sequence and zero sequence reactance of an alternator

Any other experiment based on syllabus which will help students to understand topic / concept.

Industry Visit: Students’ visit to be arranged to the nearby industry involved in design/ manufacturing/ processing in the following electrical engineering domains: Electrical Machines / Electrical Power / Renewable energy / Power Electronics / Instrumentation / Communication Systems. All students shall submit visit report in appropriate format as a part of the submission for EEL501.

Note: Students and teachers are encouraged to use the virtual labs whose links are as given below The remote-access to Labs in various disciplines of Science and Engineering is available. Students can conduct online experiments which would help them in learning basic and advanced concepts through remote experimentation.

Virtual Lab Website Reference
1. http://vlab.co.in/broad-area-electrical-engineering
2. http://vlab.co.in/broad-area-electronics-and-communications
Term work:
Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:
- Experiments Performance : 10 marks
- Journal : 05 marks
- Industrial Visit report : 05 marks
- Attendance (Theory and Practical) : 05 marks
The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical and Oral Examination:
Practical and Oral examination will be based on entire syllabus of EEC501: Electrical AC Machines-II
Course Objectives

The course is aimed:
1. To understand basic block sets of different simulation platform used in electrical/electronic circuit design.
2. To understand use and coding in different software tools used in electrical/electronic circuit design.

Course outcomes

Upon successful completion of this course, the learner will be able to
1. Develop the skill to use the software packages to model and program electrical and electronic systems.
2. Model different electrical and electronic systems and analyze the results.
3. Articulate importance of software packages used for simulation in laboratory experimentation/research/industry by analyzing the simulation results.
4. Simulate circuits for performance analysis.

Suggested Software Tools to be Used for Simulation Lab-II:

Note:
1. Students should be encouraged to use open source softwares such as SCILAB, LTSPICE, Texas Instrument’s ‘Webbench’, Ngspice, Solve Elec etc. for carrying out the lab simulation listed below.
2. Use of Professional Licensed versions of softwares like MATLAB, Proteus, LabVIEW, NI Multisim, PSpice, PSim, PSCAD, TINA etc. is also allowed.
3. Use of ‘Python’ platform for simulating components/circuit behaviour should also be emphasized.
4. Many of the following suggested experimentation can be carried out on Virtual lab platform.

Suggested List of Laboratory Experiment: Minimum eight experiments need to be performed from various subjects domain. Some of the simulation experiments can also be selected based on the department elective offered

1. Study of sampling theorem, effect of under-sampling.
2. Study of Quantization of continuous-amplitude, discrete-time analog signals.
3. Study of properties of Linear time-invariant system.
4. Simulation of Signal processing circuit (amplifier/ filter/linearizing circuits) used for sensors/transducers.
5. Virtual Instrumentation based Simulations of measurement and processing of Non-electrical parameters like temperature, pressure, force, speed etc.
6. Virtual Instrumentation based Simulation of any suitable industrial Process
7. Simulate the performance of a chemical sensor.
8. Characterize the strain gauge sensor.
9. Characterize the temperature sensor (Thermocouple).
10. Characterize the temperature sensor (RTD).
11. Simulate the performance of a bio-sensor.
Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

- Experiments Performance : 10 marks
- Journal : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:
Oral examination will be based on all the laboratory experiments carried out in EEL-502 - Simulation Lab-II
ELECTRICAL ENGINEERING - SEMESTER-V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL503</td>
<td>Control Systems Lab</td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pract./Tut.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pract./Tut.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Sem. Exam</td>
</tr>
<tr>
<td>EEL503</td>
<td>Control Systems Lab</td>
<td>Test 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg</td>
</tr>
</tbody>
</table>

Course Objectives
1. To study basic concepts of control system
2. To familiarize with the modelling of dynamical systems and the characteristics of control components like AC servo motor, DC servo motor, DC position control system and synchros
3. To employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions to ascertain the required dynamic response from the system

Course outcomes
Upon successful completion of this course, the learner will be able to
1. Illustrate the functioning of various components of control system.
2. Analyse the response of physical system for various inputs.
3. Analyze and interpret stability of the system through Root Locus, Bode plot and Nyquist plots
4. Execute time response analysis of a second order control system using MATLAB

Syllabus: Same as EEC503: Control Systems

Suggested List of Laboratory Experiments: Minimum four from Group (A) and four from Group (B), in all minimum eight experiments need to be performed.

(A) Laboratory Experiments
1. Study of AC Servomotor
2. Study of DC Servomotor
3. Study of potentiometer as an error detector
4. Study of Synchros as an error detector
5. Study of AC position control system
6. Study of DC position control system
7. Obtain time response of first order to step ramp and parabolic input
8. Obtain time response of second order system to step input.

(B) Simulation Based Experiments (on Simulation Platform like MATLAB/SCILAB or Python Programming tool)
1. a) Simulation of a typical second order system and determination of step response and evaluation of time domain specifications
 b) Evaluation of the effect of additional poles and zeroes on time response of second order system
 c) Evaluation of effect of pole location on stability
 d) Effect of loop gain of a negative feedback system on stability
2. Draw the Root loci for a given transfer function and verification of breakaway point and imaginary axis crossover point.
3. Obtain the phase margin and gain margin for a given transfer function by drawing bode plots and verify the same.
4. Draw the Nyquist plot for a given transfer function.
5. Obtain State model from Poles and zero and also from transfer function
6. Determination of step, ramp & impulse response of a state model

Any other experiment based on syllabus which will help students to understand topic / concept.

Note: Students and teachers are encouraged to use the virtual labs whose links are as given below The remote-access to Labs in various disciplines of Science and Engineering is available. Students can conduct online experiments which would help them in learning basic and advanced concepts through remote experimentation.

Virtual Lab Website Reference
1. http://vlab.co.in/broad-area-electrical-engineering
2. http://vlab.co.in/broad-area-electronics-and-communications

Term work:
Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:
 Experiments Performance : 10 marks
 Journal : 10 marks
 Attendance (Theory and Practical) : 05 marks
The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:
Oral examination will be based on entire syllabus of EEC503: Control Systems
Course Code: EEL504
Course Name: Professional Communication & Ethics-II
Teaching scheme:
- Theory: --
- Pract.: 2^* + 2 Hours (Batch-wise)
- Tut.: --
Credit assigned: 02

*Theory class to be conducted for full class.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL504</td>
<td>Professional Communication & Ethics-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory</td>
<td>Pract.</td>
</tr>
<tr>
<td></td>
<td>Internal Assessment</td>
<td>End</td>
</tr>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADVANCED TECHNICAL WRITING :PROJECT/PROBLEM BASED LEARNING (PBL)</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>1.1 Purpose and Classification of Reports:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classification on the basis of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Subject Matter (Technology, Accounting, Finance, Marketing, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time Interval (Periodic, One-time, Special)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Function (Informational, Analytical, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physical Factors (Memorandum, Letter, Short & Long)</td>
<td></td>
</tr>
</tbody>
</table>
1.2. Parts of a Long Formal Report:
- Prefatory Parts (Front Matter)
- Report Proper (Main Body)
- Appended Parts (Back Matter)

1.3. Language and Style of Reports
- Tense, Person & Voice of Reports
- Numbering Style of Chapters, Sections, Figures, Tables and Equations
- Referencing Styles in APA & MLA Format
- Proofreading through Plagiarism Checkers

1.4. Definition, Purpose & Types of Proposals
- Solicited (in conformance with RFP) & Unsolicited Proposals
- Types (Short and Long proposals)

1.5. Parts of a Proposal
- Elements
- Scope and Limitations
- Conclusion

1.6. Technical Paper Writing
- Parts of a Technical Paper (Abstract, Introduction, Research Methods, Findings and Analysis, Discussion, Limitations, Future Scope and References)
- Language and Formatting
- Referencing in IEEE Format

EMPLOYMENT SKILLS

2.1. Cover Letter & Resume
- Parts and Content of a Cover Letter
- Difference between Bio-data, Resume & CV
- Essential Parts of a Resume
- Types of Resume (Chronological, Functional & Combination)

2.2. Statement of Purpose
- Importance of SOP
- Tips for Writing an Effective SOP

2.3. Verbal Aptitude Test
- Modeled on CAT, GRE, GMAT exams

2.4. Group Discussions
- Purpose of a GD
- Parameters of Evaluating a GD
- Types of GDs (Normal, Case-based & Role Plays)
- GD Etiquettes

2.5. Personal Interviews
- Planning and Preparation
- Types of Questions
- Types of Interviews (Structured, Stress, Behavioural, Problem Solving & Case-based)
- Modes of Interviews: Face-to-face (One-to-one and Panel) Telephonic, Virtual

BUSINESS MEETINGS

3.1. Conducting Business Meetings
- Types of Meetings
- Roles and Responsibilities of Chairperson, Secretary and Members
- Meeting Etiquette

3.2. Documentation
- Notice
- Agenda
- Minutes
TECHNICAL/BUSINESS PRESENTATIONS

4.1 Effective Presentation Strategies
- Defining Purpose
- Analyzing Audience, Location and Event
- Gathering, Selecting & Arranging Material
- Structuring a Presentation
- Making Effective Slides
- Types of Presentations Aids
- Closing a Presentation
- Platform skills

4.2 Group Presentations
- Sharing Responsibility in a Team
- Building the contents and visuals together
- Transition Phases

INTERPERSONAL SKILLS

5.1 Interpersonal Skills
- Emotional Intelligence
- Leadership & Motivation
- Conflict Management & Negotiation
- Time Management
- Assertiveness
- Decision Making

5.2 Start-up Skills
- Financial Literacy
- Risk Assessment
- Data Analysis (e.g. Consumer Behaviour, Market Trends, etc.)

CORPORATE ETHICS

6.1 Intellectual Property Rights
- Copyrights
- Trademarks
- Patents
- Industrial Designs
- Geographical Indications
- Integrated Circuits
- Trade Secrets (Undisclosed Information)

6.2 Case Studies
- Cases related to Business/Corporate Ethics

List of assignments:

(In the form of Short Notes, Questionnaire/MCQ Test, Role Play, Case Study, Quiz, etc.)

1. Cover Letter and Resume
2. Short Proposal
3. Meeting Documentation
4. Writing a Technical Paper/Analyzing a Published Technical Paper
5. Writing a SOP
6. IPR
7. Interpersonal Skills
8. Aptitude test (Verbal Ability)

Note:
1. The Main Body of the project/book report should contain minimum 25 pages (excluding Front and Back matter).
2. The group size for the final report presentation should not be less than 5 students or exceed 7 students.
3. There will be an end-semester presentation based on the book report.

Assessment:

Term Work:
Term work shall consist of minimum 8 experiments.
The distribution of marks for term work shall be as follows:
- Assignment: 10 Marks
- Attendance: 5 Marks
- Presentation slides: 5 Marks
- Book Report (hard copy): 5 Marks
The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal oral:

Oral Examination will be based on a GD & the Project/Book Report presentation.
- Group Discussion: 10 marks
- Project Presentation: 10 Marks
- Group Dynamics: 5 Marks

Books Recommended:

Textbooks and Reference books:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEM501</td>
<td>Mini Project – 2A</td>
<td>Theory: 4 Pract./Tut.: 2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td>EEM501</td>
<td>Mini Project – 2A</td>
<td></td>
</tr>
</tbody>
</table>

$ indicates work load of Learner (Not Faculty)

Course Objectives
1. To design and develop a moderately complex electrical/electronic/digital circuit with practical applications.
2. To understand basic concepts of circuit design while developing the project.
3. To enable the students to gain hands-on experience independently proposing and implementing the project and thus acquire the necessary confidence to deal with complex electrical/electronic/digital systems.

Course Outcomes
Upon successful completion of this course, the learner will be able to:
1. Identify problems based on societal /research needs.
2. Apply Knowledge and skill to solve societal problems in a group.
3. Develop interpersonal skills to work as member of a group or leader.
4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
5. Analyse the impact of solutions in societal and environmental context for sustainable development.
6. Use standard norms of engineering practices
7. Excel in written and oral communication.
8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
9. Demonstrate project management principles during project work

A. Mini Project - Topic Selection and Approval
1. The group may be of maximum FOUR (04) students.
2. Students should propose project ideas & finalize the project idea in consultation with guide/ HOD. Students should select a problem which addresses some basic home, office or other real life applications. The mini project must have hardware part. The software part is optional.
3. Students should identify different components/ devices, instruments, simulation/emulations software tools required for the project.
4. Students should submit implementation plan in the form of Gantt/ PERT/ CPM chart, which will cover weekly activity of project.
5. A Log Book to be prepared by each group to record the work progress in terms of milestones per week by students. Weekly comment, remarks to be put by guiding faculty.
B. Mini Project – Execution

i. Design and Fabrication
 a. Initial fabrication of the project by students can be done using standard devices/material/software tools to verify the circuit functionalities. Initial project fabrication and testing is expected to be done by soldering/assembling on general purpose PCB/ Bakelite boards or suitable platforms required for the electrical/electronic/digital components. Discourage the use of breadboards.
 b. If essential, use of a simulation/emulation software tools to test and verify the performance of the circuit should be encouraged.
 c. Students should prepare the proper drawings (electrical/mechanical), schematics/layouts of the project.
 d. For final implementation of the circuit, preparation of PCB (if any required) using suitable CAD tools and fabricating the same in the lab is expected.

ii. Devices/ Components/ Systems to be Used:
 Students are encouraged to use passive components like resistors, capacitors, inductors etc. If any specialize inductor is not readily available, the fabrication of the same in the lab should be encouraged. Other components like: Transistors, diodes, voltage regulators, logic gates, Op-amps, general purpose microcontroller, DC motors/AC motors, sensors, actuators, relays etc. (Students may add more components as per the requirement of project).

iii. Testing and analysis of the Project
 Students should test the circuit using suitable laboratory equipments like power supply, multi-meter, CRO, DSO etc. In case of any debugging requirement, students should record the problems faced during the testing and solutions sought after for the fault in the circuit.
 All the testing results must be well documented in the final project report verifying the functionalities of the propose project.

iv. Use of Reference Material/Literature:
 Students are advised to refer Application Notes, research publications & data sheets of various electrical/electronic/digital devices from Texas Instruments, Microchips, International Rectifiers, ST Microelectronics, Philips, NXP and many other manufacturers.

C. Project Report Format:
 Mini Project report should include circuit diagram, operation, application, design details, testing, waveforms (if applicable) references, simulation results and final prepared PCB image, conclusion, etc. Project report should include report of all above steps listed in (2) and the conclusion.

Note:
It is expected that the department should organise some of the guidance expert lectures/video lectures/courses/webinars/workshops etc. for the students at the appropriate timing during the Mini Project practical slots on following topics:
1) Understanding passive components viz. resistors, capacitors and inductors from practical point of view: types/ varieties, device packages, applications and cost.
2) Understanding semiconductor components viz. diodes, BJT and JFET/MOSFETs from practical point of view: types/ varieties, device packages, applications and cost.
3) Design principles of simple electrical/electronic circuits with some examples.
4) Selection of switches and circuit protection components.
5) Selection and sizing of wires and conductors.
6) Soldering Practice.
7) Heat-sinking and Enclosure design concepts
8) Overall workmanship while working on the project fabrication.
9) Use of different software tools for design and development of circuits
10) Use of standard as well as some of the advanced laboratory equipments needed for testing of such projects.
Application Domains:
List of key application domains from where students are encouraged to derive Mini Projects topics:

1) Smart Agriculture solutions
2) Power converter applications in various Applications
3) IoT based applications in power systems
4) AI/ML applications in disaster management
5) Renewable Energy
6) Energy Conservation
7) Energy Storage
8) Battery Charging and Protection
9) Fire Safety
10) Electrical System Protection
11) Lighting Control
12) Wireless Power Transfer
13) Electrical Components Testing
14) Electrical Parameters Measurement
15) Non-conventional Electricity Generation
16) Laboratory Equipments
17) E-Mobility / Electric Vehicles
18) Video Surveillance Systems
19) Robotics for Hazardous applications
20) Waste Management System
21) Smart City Solutions
22) Smart Classrooms and learning Solutions
23) Design of Electrical Equipment
24) PLC based automation system
25) Power system Monitoring System (EMS)

It is every much expected that the complexity of the Mini Project 2A/ 2B should be increased compared to the selection of projects during Mini Project 1A/1B. Also based on the subjects learned in Sem. III and Sem. IV the broader area inclusive of the concepts learned must be selected. Students can identify the mini project topics either from above suggested domains or any other relevant electrical engineering domains. The inter-disciplinary nature of the project is also desirable.

Guidelines for Assessment of Mini Project:

Term Work
- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual’s contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;
 - Marks awarded by guide/supervisor based on log book : 10
 - Marks awarded by review committee : 10
 - Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year Mini Project:
- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
First shall be for finalization of problem
Second shall be on finalization of proposed solution of problem.

In second semester expected work shall be procurement of components/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
- First review is based on readiness of building working prototype to be conducted.
- Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year Mini Project:
- In this case in one semester students’ group shall complete project in all aspects including,
 - Identification of need/problem
 - Proposed final solution
 - Procurement of components/systems
 - Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalization of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project:
Mini Project shall be assessed based on following criteria;
1. Quality of survey/need identification
2. Clarity of Problem definition based on need.
3. Innovativeness in solutions
4. Feasibility of proposed problem solutions and selection of best solution
5. Cost effectiveness
6. Societal impact
7. Innovativeness
8. Cost effectiveness and Societal impact
9. Full functioning of working model as per stated requirements
10. Effective use of skill sets
11. Effective use of standard engineering norms
12. Contribution of an individual’s as member or leader
13. Clarity in written and oral communication

In one year, project, first semester evaluation may be based on first six criteria’s and remaining may be used for second semester evaluation of performance of students in mini project.
In case of half year project all criteria’s in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Oral Examination:
- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Oral Examination:
Mini Project shall be assessed based on following points:
1. Quality of problem and Clarity
2. Innovativeness in solutions
3. Cost effectiveness and Societal impact
4. Full functioning of working model as per stated requirements
5. Effective use of skill sets
6. Effective use of standard engineering norms
7. Contribution of an individual’s as member or leader
8. Clarity in written and oral communication
Reference Books:

6. Archambeault and D. James, PCB Design for Real-World EMI Control, Springer Publications
8. Peter Dalmaris, “Kicad Like a Pro”, Tech exploration

Suggested Software tools:

2. Eagle: https://www.autodesk.in/products/eagle/overview
3. OrCAD: https://www.orcad.com/
4. Multisim : https://www.multisim.com/
5. Webbench: http://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html
6. Tinkercad: https://www.tinkercad.com/

Online Repository:

1. https://www.electronicsforu.com
2. https://circuitdigest.com
3. https://www.electronicshub.org
4. Github
Course Code: EEC601

Course Name: Power System Protection and Switchgear

<table>
<thead>
<tr>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>3</td>
</tr>
<tr>
<td>Tutorial</td>
<td>-</td>
</tr>
<tr>
<td>Theory</td>
<td>3</td>
</tr>
<tr>
<td>Tutorial</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td>EEC601</td>
<td>Power System Protection and Switchgear</td>
<td>20</td>
</tr>
</tbody>
</table>

Course Objectives
- To impart basic knowledge of power system protection, substation equipment and protection schemes.

Course Outcomes
- Upon successful completion of this course, the learner will be able to:
 1. To select the appropriate switching/protecting device for substations.
 2. To discriminate between the application of circuit breaker and fuses as a protective device.
 3. To understand the basic concept of relay, types of relay and their applications in power system.
 4. To select the specific protection required for different components of power system according to the type of fault.
 5. To apply the specific protection provided for different types of transmission lines.

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Substation Equipment and switching devices</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Substation Equipment: Instrument Transformers: Role of instrument transformers in measuring and protection, difference between measuring and protection CTs, selection of technically suitable instrument transformers;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switchgear: Definition, Types, Location of switchgear in typical power system, single line diagram to show the measuring and protection scheme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switching Devices: Isolator & Earthing switch (Requirements & definitions, types and construction, Pantograph Isolators, Ratings), Load break switches- Ratings and applications; Contactors- Basic working principle, Terms & Definitions, applications.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Circuit Breakers and Fuses:</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Circuit Breaker: Arc initiation, arc quenching principles, Re-striking voltage, RRRV, Recovery voltage, Types of Circuit Breakers: For LV application- MCB, MCCB, ELCB, air circuit breakers. For HV application- SF6 circuit breakers, vacuum circuit breakers (working principle, Construction, operating mechanisms, ratings & applications), Mechanical life, Electrical life and testing of circuit breakers. Principle and applications of LV and HV DC circuit breakers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuses & their applications: Introduction, classification, working principle and applications of re-wirable and HRC fuses, Expulsion and drop out fuses, Fusing factor, selection of fuse link and cut off characteristics</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Protective relaying:</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>Shunt & Series Faults, causes and Effects of faults, Importance of protective relaying, Protective zones, primary & Back-up protection, Different types of backup protection, desirable qualities of protective relaying, PSM & TSM(Importance, Different types of Time-current characteristics and application), working principle of Electromagnetic Induction disc Relays, Thermal, bimetal relays, Frequency relays, under/over voltage relays, DC relays,</td>
<td></td>
</tr>
</tbody>
</table>
Different Principles of protection

Protection Schemes Provided for major Apparatus:
Generators
- Stator side (Differential, Restricted Earth fault, protection for 100% winding, Negative phase sequence, Reverse power, turn-turn fault), Rotor side (Field suppression, field failure, Earth fault, turn to turn fault)

Transformers
- Differential protection for star delta Transformer, Harmonic restraint relay, REF protection, Protection provided for incipient faults (Gas actuated relay).

Induction motors
- Protection of motor against over load, short circuit, earth fault, single phasing, unbalance, locked rotor, phase reversal, under voltage, winding temperature, Protection co-ordination

Protection of Transmission Lines:
- Feeder protection - Time grading, current grading, combined time & current grading protection provided for Radial, Ring Main, Parallel, T- Feeder.
- Bus Zone Protection - Differential protection provided for different types of bus zones.
- LV, MV, HV Transmission Lines - Protection provided by over current, earth fault, Differential and Stepped distance protection.
- EHV & UHV Transmission lines - Type and nature of faults, Need for auto-reclosure schemes, Carrier aided distance protection (Directional comparison method), Power Line Carrier Current protection (Phase comparison method). Introduction to the concept of Islanding

Introduction to Static & Numerical Relays:
Static Relays
- Introduction, Definition, Advantages and Disadvantages, Application of op-amps, logic gates, DSP, in static/ digital Relays. Relays as comparators (Amplitude & phase),

Numerical Relays
- Introduction, Block diagram of numerical relay, Signal sampling, Anti –Aliasing Filter, Introduction to the concept of Phase Measurement Unit

Books Recommended:

Text Books:
2. Power system Protection & Switchgear by Badriram Vishwakarma, TMH
3. Power System Protection And Switchgear by Bhuvanesh A O, Nirmal CN, Rashesh PM, Vijay HM, Mc Graw Hill

Reference Books:
2. Static Relays by Madhava Rao, TMH
4. Protective Relaying by Lewis Blackburn, Thomas.J.Domin
5. Power System Protection by P.M. Anderson, Wiley Interscience
6. Modern Power System Protection – Divyesh Oza, TMH Publication

Website Reference / Video Courses:
Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining question will be randomly selected from all the modules.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>EEC602</td>
<td>Microcontroller Applications</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1</td>
</tr>
<tr>
<td>EEC602</td>
<td>Microcontroller Applications</td>
<td>20</td>
</tr>
</tbody>
</table>

Course Objectives
1. To understand the features and architecture of PIC 18 microcontroller.
2. To introduce assembly programming knowledge for PIC 18 microcontroller.
3. To impart embedded programming knowledge for PIC 18 microcontroller using C.
4. To introduce various applications using microcontroller based system.

Upon successful completion of this course, the learner will be able to:
1. To analyse the difference between microprocessor and microcontroller based systems.
2. To write, debug and execute the software programs for internal peripheral devices of microcontroller.
3. To write, debug and execute the software programs for external peripheral devices for microcontroller based systems.
4. To design and implement the peripheral devices interfacing with microcontroller.

Module	Contents	Hours
1. | Introduction to Microcontroller
Block diagram of generic microcontroller, Microcontroller versus Microprocessor, A brief history of PIC microcontroller, Overview of PIC 18 family and features, Internal Bus structure of PIC microcontroller, Clock frequency, machine cycle and instruction cycle. | 05 |
2. | PIC18F Programming Model and Instruction Set
PIC18 microcontroller programming model, Bus architecture, program memory and data memory organization, Special Function Registers (SFRs), General Purpose Registers (GPRs)
CPU registers: Working Register (Wreg), Status Register, Bank Select Register (BSR), Instruction Decoder
Memory Pointers: Program ROM and Program Counter (PC), Data ROM and Table Pointer (TBLPTR), File memory and File Select Register (FSR), Stack and Stack Pointer (STKPTR)
PIC 18 internal Architecture: ALU, EEPROM, RAM, IO Ports, Timer, ADC, Serial port, CCP, Pipelining. (conceptual overview only)
Instructions and Assembly Programs: Instruction Set, Instruction formats, Addressing modes, Assembler Directives, Assembly programs. (Assembly programs are restricted to basic arithmetic, logical and data transfer operations only) | 08 |
3. | PIC 18 Support Devices
Timer Module: Basic Concept of Timers and counters, Timer Registers, Control Registers, 8 bit and 16 bit operation (only for Timer 0), CCP module (Capture, Compare and PWM), Watch dog Timer.
ADC module: ADC Features, Block diagram of ADC module, ADC Registers, ADCON0, ADCON1 and ADCON2.
Interrupt Module: Basic concept of Interrupt, PIC 18 Interrupts, Interrupt versus polling, Interrupt sources, Interrupt vector, Interrupt service routine, Interrupt process, RCON, INTCON, IPRI and PIE1. | 06 |
Parallel Ports and Serial Communication
IO PORT Module: Basic concept of I/O interfacing, PORT Registers, TRIS Registers, LAT Registers, Simple input /output peripheral interfacing (switches & LEDs).
Serial communication: Basics of serial communication, Data framing, USART module, SPBRG, TXREG, RCREG, TXSTA, RCSTA, PIR1

PIC Programming in C
IO programming: Byte size IO, Bit addressable IO.
Timer programming: Generating delay, generating square wave. (for Timer0 using Interrupt based programming only)
Serial port programming: Transmit data serially, Receive data serially. (Interrupt based programming only)

Microcontroller Applications
Interfacing matrix keyboard and Seven segments LED display, LCD Interfacing, ADC Interfacing, Traffic signal controller, DC motor interfacing, Stepper motor interfacing, PWM signal generation.

Text/Reference Books:-

Website Reference / Video Courses:
1. NPTEL Course: Microprocessors And Microcontrollers By Prof. Santanu Chattopadhyay, Dept. of Electrical Engineering, IIT Kharagpur:- Web link- https://nptel.ac.in/courses/108/105/108105102/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining question will be randomly selected from all the modules.
Course Code | **Course Name** | **Teaching scheme (Contact Hours)** | **Credits Assigned**
--- | --- | --- | ---
EEC603 | Control System Design | | 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC603</td>
<td>Control System Design</td>
<td>20 20 20 80 3 - - 100</td>
</tr>
</tbody>
</table>

Course Objectives
1. To establish a quantitative foundation to the design and analysis of Control systems.
2. To impart knowledge and skill on compensator design.
3. To study basics of digital control system and design of digital compensator.
4. To understand the concept of state-space analysis, to design the compensator in time and frequency domain, to design the PID compensator.

Course Outcomes
Upon successful completion of this course, the learner will be able to
1. Define fundamental control system design specifications and basic principles of controller design
2. Understand the basic design of various compensators.
4. Design modern controllers based on the state space techniques,
5. Recognize the importance of observability and controllability for system design.

Module	**Contents**	**Hours**
1. | **Introduction to the Compensator:**
Basic concept of compensator design, its requirement, cascade compensator, feedback compensator, gain compensation, lag, lead and lag-lead compensator, proportional, derivative, integral Compensation, physical realization of compensator with passive and active components, basic block diagrams of a compensated closed loop control system. | 03
2. | **Design of Compensators using Root Locus Technique:**
Introduction, improving steady state error by gain compensation, transient response improvement by cascade compensation, improving steady state and transient response. | 08
3. | **Design of Compensators using Frequency Response Technique (Bode Plot):**
Introduction, Relation between closed-loop time response parameters of peak time, settling time, and percent overshoot with the open-loop frequency response parameters, transient response improvement by gain adjustment, Lag compensation, Lead compensation, Lag-lead compensation | 08
4. | **Design of Compensators using State variable approach:**
Introduction, pole placement topology, controller design by pole placement topology in phase variable form, controllability, controllability matrix, controllability by inspection, alternative approach to controller design, controller design by transformation. Introduction to Observer / estimator, observability, observability matrix, observability by inspection, observer design by pole placement, alternative approach to Observer design. Steady state error design using integral control | 07
5. | **Digital Control System:**
Introduction, advantage of digital control, components of digital control system, derivation of digital/pulse transfer function, block diagram reduction, stability of digital system on Z-plane, bilinear transformation, steady state error and error constants | 06
6. | **Design of Digital Compensators:** | 07

University of Mumbai, Electrical Engineering, Rev. 2019 ‘C’ Scheme
Transient response on the Z-plane, gain design on Z plane for transient response using root locus, stability design by root locus, cascade compensation (design of digital lead, lag and lag-lead compensator) of digital system using s-plane, implementing the digital compensator.

Text Books:-
1. Control system engineering by Norman Nise 2nd edition
2. Digital Control Systems by Benjamin C. Kuo, Oxford series 2nd Edition

Reference Books:-
5. Modern control system engineering by K. Ogata, printice Hall.
7. Process Control principles and applications, Surekha Bharot, Oxford Higher education

Website Reference / Video Courses:
1. NPTEL Course: Advanced Linear Continuous Control Systems By Prof. Yogesh Hote, Dept. of Electrical Engineering, IIT Roorkee:- Web link- https://nptel.ac.in/courses/108/107/108107115/
2. NPTEL Course: Industrial Instrumentation By Prof. Prof. S. Mukhopadhyay and Prof. S.Sen, IIT Kharagpur:- Web link- https://nptel.ac.in/courses/108/105/108105062/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
Course Code | **Course Name** | **Teaching scheme (Contact Hours)** | **Credits Assigned**
--- | --- | --- | ---
EEC604 | Signals and Systems | Theory | Pract./Tut.
--- | --- | --- | ---
3 | -- | 3 | 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC604</td>
<td>Signals and Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Sem. Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam Duration (in Hrs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term Work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pract/Oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives

1. To impart knowledge on continuous and discrete time signals.
2. To understand the basic properties of signals & systems
3. To know the methods of characterization of LTI systems in time domain
4. To analyze discrete time signals and system in the Fourier and Z transform domain
5. Understand the design of various types of digital filters and implement them using various implementation structures

Course Outcomes

Upon successful completion of this course, the learner will be able to

1. Discriminate continuous and discrete time signals and systems.
2. Understand the transformation of discrete time signal to Z domain.
3. Analyse frequency response of systems using Z domain.
4. Design, implementation, analysis and comparison of digital filters for processing of discrete time signals

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction- Classification of Signals and Systems: Definitions of signal and system. Standard signals- Step, Ramp, Pulse, impulse, Real and complex exponentials and Sinusoids, Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Even and odd, Energy & Power signals, Classification of systems- Linear/ Non-Linear, Time-Variant/Invariant , Causal /Anti causal, stable/unstable, Memory/ Memory less System (static and dynamic), Sampling Theorem (Derivation is not Required). Basic operations on signals-Folding, Scaling and Time shifting). Convolution in DT domain (Matrix Method only)</td>
<td>07</td>
</tr>
<tr>
<td>2.</td>
<td>Z-Transform Z-Transform of bilateral signal, Definition of ROC, Properties of ROC, Properties of Z-transform, Inverse Z-Transform (only partial fraction).</td>
<td>05</td>
</tr>
<tr>
<td>3.</td>
<td>Frequency Response & Fourier Series Pole-zero plot in DT domain, Minimum phase, Maximum phase, Mixed phase and Linear, Phase System based on location of zeros, Low pass, high pass, Band pass and band reject system based on pass band frequency, Formation of Difference Equation, Solution of difference Equation (with & without initial Conditions), Zero input, zero state and Total Response of the system, Magnitude and phase response (only Analytical Method). , Introduction to Fourier Series: Representation of continuous time Periodic Signals, convergence of the Fourier Series, Properties of continuous time Fourier Series, Fourier Series representation of discrete time periodic signals, Properties of discrete time Fourier Series</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>Discrete and Fast Fourier Transform DTFT, DFT & IDFT (Only Matrix Method), Properties of DFT, DIT FFT Algorithm (Radix-2)</td>
<td>06</td>
</tr>
<tr>
<td>5.</td>
<td>Design of FIR System</td>
<td>06</td>
</tr>
</tbody>
</table>
Text Books:-

Reference Books:-
3. Digital Signal Processing: A Practitioner’s Approach, Kaluri V. Rangaraao, Ranjan K. Malli
 November 2006, John Wiley.

Website Reference / Video Courses:

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6011</td>
<td>Special Electrical Machines</td>
<td>Theory: 3, Pract./Tut.: 3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6011</td>
<td>Special Electrical Machines</td>
<td>Theory: 20, Pract./Tut.: 20, End Exam: 80, Duration: 3</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives

- To impart knowledge on special electrical machines and its control

Course Outcomes

Upon successful completion of this course, the learner will be able:

1. To exemplify the working of Stepper motor and its control
2. To demonstrate the functioning of SRM motor and its control
3. To illustrate the working of BLDC motor and its control
4. To illustrate the operational features of PMSM motor and its control
5. To illustrate the operational features of Synchronous reluctance motor and its control
6. To illustrate the working of Linear motors

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stepper motor and its Control: Features, construction, application and working of Stepper motor</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>Characteristics – Open Loop and Closed Loop Control – Control Strategies -Power Converter Circuit –DSP/ Microcontroller based Control</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Switched reluctance Motor and its Control: Features, construction, application and working of Switched Reluctance motor; Open Loop and Closed Loop Control- Control Strategies - Power Converter Circuit –DSP/ Microcontroller based Control</td>
<td>07</td>
</tr>
<tr>
<td>3</td>
<td>Brushless DC Machines and its control: Brushless DC Machines Construction and working principle, Equivalent magnetic circuit, Type of converter and speed control, Comparison between the axial and radial permanent magnet motors, Applications. Characteristics – Open Loop and Closed Loop Control – Control Strategies - Power Converter Circuit –DSP/ Microcontroller based Control</td>
<td>07</td>
</tr>
<tr>
<td>5</td>
<td>Synchronous Reluctance Motor and its control Construction, Working, Phasor Diagram, Torque Equation, Control - Direct Axis Current Control, Fast Torque Response Control, Advantages</td>
<td>06</td>
</tr>
<tr>
<td>6</td>
<td>Linear Induction Machine Construction, Types, Working, Feature, Thrust Equation, Equivalent circuit, Characteristics, Control, Application</td>
<td>05</td>
</tr>
</tbody>
</table>

Books Recommended:

University of Mumbai, Electrical Engineering, Rev. 2019 ‘C’ Scheme
Text Books:
1. E. G. Janardanan — Special Electrical Machine PHI, publication
3. K. Venkataratnam- Special Electric Machines, Universities Press, Apr-2009 - Technology & Engineering

Reference Books:
3. M. Ramamoorthy, O. Chandra Sekhar—Electrical Machines - PHI publication
4. R Krishnan — Permanent Magnet Synchronous and Brushless DC Motor Drives—CRC press

Website Reference / Video Courses:
1. NPTEL Course: Advanced Electric Drives By Dr. S.P. Das, Department of Electrical Engineering, IIT Kanpur:- Web link- https://nptel.ac.in/courses/108/104/108104011/
2. NPTEL Course: Fundamentals of Electric Drives By Dr. S.P. Das, Department of Electrical Engineering, IIT Kanpur:- Web link- https://nptel.ac.in/courses/108/104/108104140/

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
ELECTRICAL ENGINEERING SEM-VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6012</td>
<td>Electric Traction</td>
<td>Theory 3 Pract./Tut. -- Theory 3</td>
<td>Total 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6012</td>
<td>Electric Traction</td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 2 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Sem. Exam 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam Duration (in Hrs) 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term Work -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pract/Oral -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 100</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives

- To impart knowledge of principles of electrical traction
- To explore various electrical subsystems of traction
- To increase the awareness of latest developments in electric traction systems

Course Outcomes

Upon successful completion of this course, the learner will be able:
1. To illustrate the basics as well as the state of the art of electrical traction systems and subsystems.
2. To understand traction mechanics and different factors contributing to the traction.
3. To illustrate and analyse the performance of various traction motors and drives
4. To explain the traction power Supply arrangement and its protection aspects.
5. To understand the design requirements of the overhead equipments
6. To demonstrate the functioning of railway signaling system

Module | Contents | Hours |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Electric Traction: Requirements of Ideal Traction Systems, the Indian Scenario of Electric traction, Present day State of art Electric traction as a Viable Transport Strategy, Advantages of Electric Traction over other systems of traction, Ideal choice of traction system, Power supply systems for Electric Traction, DC systems, Single phase ac system and three phase ac systems, Kando systems, Latest Developments in 3phase with special reference to locomotives, EMUs and Metro stock, Role of Battery banks in Traction, types and maintenance.</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>Traction Mechanics: Types of services, Speed-Time Curve, Trapezoidal, Quadrilateral Speed-Time Curve, Mechanics of train movement, Different Speed - time characteristics for train movement, Requirement of tractive effort and tractive effort produced, Train resistance, Power output and energy output from driving axles, Specific energy consumption & Factors affecting SEC, Adhesion & Coefficient of adhesion, Concept of Weight Transfer and weight transfer due to torque exerted by Traction motor, Influence of Electrical parts on Co-efficient of adhesion, wheel slip detection device (Numericals)</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td>Traction motor and Drives: Type of traction motor best suited for traction duties, Available motor characteristics and their suitability for traction duties, speed control methods, Braking methods, special Emphasis and techniques of regenerative braking, Optimization of design and construction features for improved power to weight ratio, Power Factor and Harmonics, Traction Effort and Drive Ratings, Important Features of Traction Drives, conventional DC and AC Traction drives, Semiconductor/IGBT based Converter Controlled Drives, DC Traction using Chopper Controlled Drives, AC Traction employing Poly-phase motors, Traction control of DC locomotives and EMU’s, Traction control system of AC locomotives, Control gear, PWM control of induction motors, Power & Auxiliary circuit equipment (Other than traction control)</td>
<td>10</td>
</tr>
</tbody>
</table>
motors), Linear Induction motors, introduction to Maglev Technology.

4. **Power Supply Arrangement and Protection:**
 Traction substation, spacing and location of Traction substations, Major equipment at traction substation, selection and sizing of major equipment like transformer and Switchgear, Types of protection provided for Transformer and overhead lines, surge protection, maximum demand and load sharing between substations, sectionalizing paralleling post and feeder posts, Booster transformers, Return Conductor, 2X25KV AC system, controlling/monitoring, Railway SCADA systems, Train lighting and Air-conditioning

5. **Overhead Equipment and Track circuits:**
 Design requirement of catenary wire, contact wire, Dropper, Height, span length, Automatic weight tensioning, section insulator, overlap, Different techniques of current collection (overhead and underground systems), neutral section, overhead crossing of power lines, Protection.

6. **Railway Signaling:**

Textbook and Reference Books
1. Modern Electric traction by H.Partab:
2. Electric Traction – Motive Power and Energie Supply by Andreas Steimel, Oldenbourg Industrieverlag GmbH, 2008
3. Electrical Railway Transportation Systems by Morris Brenna, Federica Foiadelli and Dario Zaninelli, IEEE Press and Wiley, 2018

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credit Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6013</td>
<td>High Voltage Engineering</td>
<td>3 Theory - 3 Practical</td>
<td>3 Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDO6013</td>
<td>High Voltage Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Sem. Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pract. & Oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Test 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Test 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives
1. To understand various breakdown processes in solid, liquid and gaseous insulating materials.
2. To impart the knowledge of Generation of high voltage DC, AC and Impulse voltages and currents.
3. To impart the knowledge of Testing and Measurement of high voltage DC, AC and Impulse voltages and currents.
4. To understand the design and layout of HV Laboratories

Course outcomes
Upon successful completion of this course, the learner will be able:
1. To know the fundamentals properties of the materials and their failure mechanisms to get appropriate and optimal design.
2. To explain and calculate the generation and measurement of High DC, AC and Impulse voltages and currents.
3. To understand testing of High voltage power apparatus.
4. To illustrate the major requirements in design of HV Laboratories

Module Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrostatic Fields, Their Control and Estimation:</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>• Electric field Stress, its control and Estimation, Numerical methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Finite difference, Finite Element and Charge simulation method for estimation of Electric Field. Surge voltage, their distribution and control</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Conduction and Breakdown in Air and Other Gaseous Dielectrics:</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>• Gases as insulating media, Collision Processes, Ionization process in gas, Townsend’s Theory, current growth equation in presence of primary and secondary ionization processes, Townsend’s criterion for breakdown in electronegative gases, Limitation of Townsend’s theory, Panchen’s law, Breakdown in non-uniform fields and corona discharges.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Streamer mechanism of breakdown, Post-breakdown phenomenon and application.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Practical considerations in using gas for insulation purposes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Numerical on Townsend’s theory and Paschen’s law)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Breakdown in Liquid and Solid Dielectrics:</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>• Liquid Dielectrics, Conduction and breakdown in pure liquids, Conduction and breakdown in commercial liquids: Suspended Particle Theory, Cavitations and bubble Theory.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Solid dielectrics used in practice, Intrinsic, Electro-mechanical and Thermal breakdown, Breakdown of solid dielectrics in practice, due to chemical, electrochemical deterioration, treeing, tracking, Internal discharges.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Breakdown of composite insulation, Application of insulating materials in electrical power apparatus, electronic equipment’s.</td>
<td></td>
</tr>
</tbody>
</table>
Generation & Measurement of High Voltage and Currents:
- Generation of high voltage and currents: Generation of high DC voltages by rectifier, Voltage doublers and multiplier circuits.
- Electrostatic machines, Generation of high AC voltage – Cascading of transformers, series and parallel Resonance transformer (system), Tesla coil.
- Generation of impulse voltages and currents-Impulse voltage definition, wave front and wave tail time, Multistage impulse generator, Modified Marx circuit, Tripping and control of conventional impulse generators, Introduction to Generation of high impulse current, (Design of Marx Generators circuits- numerical can be taken).
- Generation of switching surges. (Numerical based on impulse generation, high DC voltage generation, optimum number of stages)

Measurement of High Voltages and Currents:
- High ohmic series resistance with micro-ammeter., HVAC and impulse voltage-Resistance and capacitance voltage dividers, Sphere gap for measurement of High DC, AC and impulse voltages, Capacitance Voltage Transformer
- Measurement of High DC, AC and impulse currents

High Voltage Testing of Electrical Power Apparatus and H V Laboratories Layouts:
- Non-destructive testing of dielectric materials, DC resistivity measurement, Dielectric and loss factor measurement, Partial discharge measurement.
- Testing of insulators and bushing, Power capacitors and cables testing, testing of surge diverters.
- High Voltage laboratory–design, planning and layout. - Size and dimensions of the equipment and their layout, Classification of HV laboratory, Earthing and Shielding of H.V. laboratories, its importance.

Textbooks:

Reference books:

Website Reference / Video Courses:

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
Course Objectives
- To explore the various energy storage technologies and their major applications
- To increase awareness of ES suitability and capacity calculation for any given applications

Course Outcomes
Upon successful completion of this course, the learner will be able:
1. To illustrate the importance of energy storage systems in Power systems and other application domains
2. To illustrate the operational features of various energy storage technologies
3. To understand the principles and types of thermal, mechanical, electrochemical and electrical energy storage systems.
4. To compare and contrast different types of Energy storage systems
5. To illustrate the hybridization of various ES technology to improve the performance
6. To calculate the capacity of ES system for various application requirements,

Module

<table>
<thead>
<tr>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Energy Storage systems and components:</td>
<td>07</td>
</tr>
<tr>
<td>Historical Perspective, Storage Needs, Variations in Energy Demand,</td>
<td></td>
</tr>
<tr>
<td>Interruptions in Energy Supply, Demand for Portable Energy, Environmental and sustainability issues; Necessity of energy storage, different types of energy storage, mechanical, chemical, electrical, electrochemical, biological, magnetic, electromagnetic, thermal, comparison of energy storage technologies;</td>
<td></td>
</tr>
<tr>
<td>2. Thermal Energy Storage:</td>
<td>05</td>
</tr>
<tr>
<td>Principles and applications, Latent heat, sensible heat storage. Molten salt, Solar pond, seasonal thermal energy storage, Ice storage; Energy and exergy analysis of thermal energy storage.</td>
<td></td>
</tr>
<tr>
<td>3. Mechanical Energy Storage:</td>
<td>04</td>
</tr>
<tr>
<td>Potential Energy Storage, Energy Storage in Pressurized Gas, Compressed air energy storage (CAES), Flywheel, Applications</td>
<td></td>
</tr>
<tr>
<td>4. Electrochemical Energy Storage:</td>
<td>07</td>
</tr>
<tr>
<td>Parameters to be considered, Cyclic behaviour, equivalent circuit of electrochemical cell, self-discharge, Battery technologies: Flow battery, Rechargeable battery, Lead-acid, Nickel-Metal hydride, Lithium Ion; Battery system model, parameters; emerging trends in batteries. Fuel Cell: types, comparison and applications.</td>
<td></td>
</tr>
<tr>
<td>5. Electrical Energy Storage:</td>
<td>06</td>
</tr>
<tr>
<td>Pumped hydro storage system, Energy Storage in Capacitors, Comparative Magnitudes of Energy Storage, Transient behaviour of a Capacitor, Super-capacitor, series connection of super capacitors, charge balancing of super capacitors; Superconducting magnetic energy storage (SMES), Applications</td>
<td></td>
</tr>
</tbody>
</table>
6. **Design, Sizing and Applications of Energy Storage:**
Design considerations for sizing of different types of energy storage systems for various applications, case studies;
Renewable energy storage- Battery sizing for stand-alone applications; Small scale application-Portable storage systems; (Numerical)
Hybrid Energy storage systems: configurations and applications.
Energy Storage - Charging methodologies, SoC, SoH, SoS estimation techniques.

Textbook:

Reference books

Assessment:
Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total four questions need to be solved.
3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
4. Remaining questions will be randomly selected from all the modules.
ELECTRICAL ENGINEERING SEM-VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credit Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL601</td>
<td>Power System Protection And Switchgear Lab</td>
<td>Theory: 2</td>
<td>Practical: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL601</td>
<td>Power System Protection And Switchgear Lab</td>
<td>Theory: 25</td>
</tr>
</tbody>
</table>

Course Objectives
- To introduce the concept of different protection schemes

Course Outcomes

Upon successful completion of this course, the learner will be able:

1. To understand the working principle of various protective devices like Circuit breakers, fuses, switches and contactors.
2. To understand the concept of various over current protection scheme and its applications in power system.
3. To understand different protection schemes of transformer and Induction motor.
4. To understand protection schemes of transmission line.

Syllabus: Same as that of Course EEC601-Power System Protection and Switchgear

Suggested List of Laboratory Experiments: Minimum six experiments need to be performed.

1. Demonstration of working parts of different Fuses and Contactor.
2. Demonstration of working parts of MCB, MCCB, RCCB & Circuit breakers.
3. To perform overcurrent protection using Induction Disc relay by setting different TSM and plot time vs current characteristics.
4. To perform overvoltage protection using Induction Disc relay by setting different TSM and plot time vs current characteristics.
5. Demonstration of different protection schemes like protection against overload, locked rotor, single phasing of 3 phase Induction motor.
7. Demonstration of Directional Over-current protection relay.
8. To perform simulation of Numerical Based relay.
9. To perform simulation of distance protection in transmission line.

- Any other experiment based on syllabus, which will help students to understand topics/concept.
- It is desirable to arrange the Visit to a substation and a report preparation.

Industry Visit: Students’ visit to be arranged to the nearby industry involved in design/ manufacturing/ processing in the following electrical engineering domains: Electrical Switchgears / Electrical Substation / Electrical Machines / Traction Locomotives / HV Equipments / Energy Storage. All students shall submit visit report in appropriate format as a part of the submission for EEL601.

Note:
Students and teachers are encouraged to use the virtual labs whose links are as given below The remote-access to Labs in various disciplines of Science and Engineering is available. Students can conduct online experiments which would help them in learning basic and advanced concepts through remote experimentation.

Virtual Lab Website Reference
Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments Performance</td>
<td>10</td>
</tr>
<tr>
<td>Journal</td>
<td>05</td>
</tr>
<tr>
<td>Industrial Visit Report</td>
<td>05</td>
</tr>
<tr>
<td>Attendance (Theory and Practical)</td>
<td>05</td>
</tr>
</tbody>
</table>

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus of EEC601 - Power System Protection and Switchgear
EEL602 Microcontroller Applications Lab

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credit Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL602</td>
<td>Microcontroller Applications Lab</td>
<td>- 2 -</td>
<td>1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Examination Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL602</td>
<td>Microcontroller Applications Lab</td>
<td>- - - 25 25 -</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objectives

1. To impart the Assembly language programming knowledge of PIC 18 microcontroller.
2. To impart the Embedded C programming knowledge of PIC 18 microcontroller.

Course Outcomes

Upon successful completion of this course, the learner will be able to

1. To write, debug and execute Assembly language based programs.
2. To write, debug and execute embedded language based programs.
3. To design and implement the interfacing of internal peripheral devices.
4. To design and implement the interfacing of external peripheral devices.

Syllabus

Same as that of Course EEC602 Microcontroller Applications

Suggested List of Laboratory Experiments

Minimum four from Group (A) and four from Group (B), in all minimum eight experiments need to be performed.

Group (A)

1. Assembly Language Programming:
 1. To perform Addition, subtraction
 2. To perform Multiplication and Division
 3. To perform Logical operations (AND, OR, X-OR, NOT)
 4. To sort Even and Odd numbers
 5. To sort Negative and Positive numbers
 6. To Find Largest Number
 7. To Find Largest Number
 8. To copy source array to destination array (Table related process)
 9. To Toggle the bits of Port.

Group (B)

1. Embedded C Language Programming:
 1. Timer programming to Generate square wave
 2. Timer programming to Generate time delay
 3. Timer programming to Generate the PWM pattern
 4. ADC programming to perform Analog to digital conversion
 5. Serial communication programming for serial data transfer
 6. IO port programming to interface simple switches and 7-segment LED Display
 7. IO port programming to interface Liquid Crystal Display (LCD)
 8. Stepper Motor interfacing
 9. DC Motor interfacing
 10. Traffic Signal programming

Any other experiment based on syllabus, which will help students to understand topics/concept.
Note: Students and teachers are encouraged to use the virtual labs whose links are as given below. The remote-access to Labs in various disciplines of Science and Engineering is available. Students can conduct online experiments which would help them in learning basic and advanced concepts through remote experimentation.

Virtual Lab Website Reference
1. http://vlab.co.in/broad-area-electrical-engineering
2. http://vlab.co.in/broad-area-electronics-and-communications

Term work:
The term work shall consist of minimum 08 experiments based on PIC 18F microcontroller using assembly and embedded C language and minimum 02 assignments. The distribution of marks shall be as follows:

- Experiments Performance : 10 marks
- Journal (Experiment and Assignments) : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical & Oral Examination:
Practical & Oral examination will be based on entire syllabus of EEC602-Microcontroller Applications
ELECTRICAL ENGINEERING - SEMESTER-VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>Teaching scheme (Contact Hours)</th>
<th>Credits Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL603</td>
<td>Control System Design Lab</td>
<td>Theory</td>
<td>Pract./Tut.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject code</th>
<th>Subject Name</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL603</td>
<td>Control Systems Design Lab</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test 1</td>
</tr>
</tbody>
</table>

Course Objectives
1. To enable the students to strengthen their understanding of the design and analysis of control systems through practical exercises
2. Use of modern software tools to analyze and simulate the performance of realistic system models and to design control systems to satisfy various performance specifications.

Course Outcomes
Upon successful completion of this course, the learner will be able to
1. Implement various types of compensators and control algorithms using simulation platforms
2. Apply root-locus & Bode Plot techniques to analyze and design control systems.
3. Able to design digital controllers, assess their design through the constraint specifications

Syllabus: Same as EEC603: Control System Design
Suggested List of Laboratory Experiments: Minimum eight experiments need to be performed.
1. To draw the frequency response characteristic of a given lag-lead compensating network.
2. To study the effect of P, PI, PD and PID controller on step response of a feedback control system (Using control engineering trainer/process control simulator). Verify the same by simulation.
3. Design of a Lead compensator using Root-locus method
4. Design of a lag compensator using Root-locus method
5. Design of a lead-lag compensator using Root-locus method
6. Design of a lead compensator using bode plot method
7. Design of a lag compensator using bode plot method
8. Design of a lead-lag compensator using bode plot method
9. Obtain transfer function of a given system from state variable model and vice versa. State variable analysis of a physical system - obtain step response for the system by simulation.
10. State variable analysis using simulation tools. To obtain step response and initial condition response for a single input, two output system in state variable form by simulation.
11. Familiarization with digital control system toolbox
12. Determination of z-transform, inverse z-transform & pole zero map of discrete systems to study step response of a discrete time system and effect of sampling time on system response
13. To explore the Properties of Digital Control Systems. Convert continuous time system to discrete system and vice versa. Root Locus of Digital control system on z-plane

Any other experiment based on syllabus which will help students to understand topic/concept is also suggested.

Note: Students and teachers are encouraged to use the virtual labs whose links are as given below. The remote-access to Labs in various disciplines of Science and Engineering is available. Students can conduct online
experiments which would help them in learning basic and advanced concepts through remote experimentation.

Virtual Lab Website Reference
1. http://vlab.co.in/broad-area-electrical-engineering
2. http://vlab.co.in/broad-area-electronics-and-communications

<table>
<thead>
<tr>
<th>Term work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:</td>
</tr>
<tr>
<td>Experiments Performance : 10 marks</td>
</tr>
<tr>
<td>Journal : 10 marks</td>
</tr>
<tr>
<td>Attendance (Theory and Practical) : 05 marks</td>
</tr>
</tbody>
</table>

The final certification and acceptance of term work ensures the minimum passing in the term work.
Course Code: EEL604
Course Name: SBL-III: Industrial Automation Lab
Teaching scheme (Contact Hours)

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Pract./Tut.</th>
<th>Theory</th>
<th>Pract./Tut.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>4</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Examination Scheme

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Internal Assessment</th>
<th>End Sem. Exam</th>
<th>Exam Duration (in Hrs)</th>
<th>Term Work</th>
<th>Oral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL604</td>
<td>SBL-III: Industrial Automation Lab</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objectives

1. Develop necessary acquaintance with components and subsystems used in industrial automation
2. Develop the necessary skillset to integrate, monitor, maintain such systems

Course Outcomes

Upon successful completion of this course, the learner will be able:

1. To comprehend with various components and subsystems used in industrial automation
2. To understand the integration of components and sub-systems.
3. To interface the microcontroller / PLC with external devices/sensors/actuators.
4. To interface the microcontroller / PLC with control circuits.
5. To design/implement/integrate such systems for any given applications

Section A:

Lab contents shall be covered through some of the following ways:

1. Class room discussions / Expert Lectures
2. Visiting various industries involving such facilities to illustrate industrial automation
3. Multiple day webinar specifically organized to cover such contents
4. In-house facility for demonstration of Industrial automation
5. Hands-on Workshop
6. Exhibitions showcasing these technologies
7. Using virtual instrumentation platform
8. Using Virtual Lab platform (Virtual Labs (vlab.co.in))

Contents:

1. **Components and subsystems used in Industrial automation:**
 - Controllers: Computers, Distributed Control Systems (DCS), Programmable Logic Controllers (PLC), Embedded Controllers.
 - Operator Interfaces (HMI)-Text based, Graphical, Touchscreens,
 - Sensors-Analog & Digital; Encoders, Proximity sensor, Ultrasonic Sensors, Photoelectric Sensors; Limit Switches
 - Actuators-Pneumatic, Hydraulic, Electric; Motors- AC, DC, Linear, Servo and Stepper motor.
 - Mechanisms and Machine Elements- Cam Driven Systems, ratchets and pawl, gears; Linkages and coupling;
 - Conveyors- Belt, Roller, Chain, Vibrating, Pneumatic.
 - Motion Profile- trapezoidal velocity motion, S-curve velocity motion, Multi-axis motion
 - hardware and software platforms for Distributed Control System, DCS Functional Block Diagram, and Sequential Flow Charts
 - Software- Design and Analysis software, PLC programming, SCADA

2. **Industry 4.0:**
Conceptual Framework: Main Concepts and Components of Industry 4.0; Technology Roadmap for Industry 4.0; Technologies and Applications: Data Analytics in Manufacturing, Role of IoT, Robotics in the era of Industry 4.0, Additive Manufacturing, 3D printing; Augmented Reality

3) **Real Life Applications:**
 - a) Agriculture/farm produce-sorting and grading system
 - b) Automated / Robotic Assembly line
 - c) Temperature Control in Process Industries
 - d) Cyclic Operation of Traffic Lights
 - e) Conveyor System for an Assortment of Objects
 - f) Automatically filling of two tanks with liquid
 - g) Automated warehouse management system
 - h) Automated bottle filling plant
 - i) Automated packaging system

4) **Industrial Safety Practices:**
 - General Workplace Safety rules and procedures, recommended safety practices, Personal Protective Equipments (PPE), Industrial safety Acts and regulations

Section B:
Based on the insights received with the coverage of syllabus contents specified in section A, the students should carry out detailed study of at least six different applications listed below (maximum two from any group is desirable). They should have hands-on experience with each of these applications. Wherever possible software development / coding should be done by students.

Group 1: Pneumatic and Hydraulic based Industrial Automation systems:
 - a) Electro-Pneumatic System for Pickup and Lay Down of Plastic Containers
 - b) Design and assembly of Pneumatic / Hydraulic circuit and wiring of control interface for a particular application
 - c) Application with different types of Pneumatic / Hydraulic valves and actuators
 (Any other application which incorporates Pneumatic and Hydraulic components)

Group 2: Drives and Control - Industrial Automation systems
 - a) Linear Motion Control System
 - b) PLC based Motion Control System
 - c) VFD control of Motor
 - d) HMI interface based Control
 - e) Conveyor belt system
 - f) Sorting and grading System for Agriculture Applications
 - g) Home automation system with Web Server
 - h) Lift control System (Demo)
 (Any other application which incorporates (Drives / Control)

Group 3: Use of IoT in following Applications
 - a) Smart Agriculture,
 - b) Smart City,
 - c) Smart Life—Wearable Technologies,
 - d) Smart Health
 - e) Smart Grid
 (Any other application which incorporates IoT)

Group 4: Other Applications: Based on PLC/ Embedded micro-controller
 - a) To wire up hardware, write and implement ladder programs for the following controls.
 i. Lamp control for various situations.
 a. Staircase control, hospital etc.
 b. Traffic light control.
 ii. Water level control using level sensors
iii. Logic implementation for Bottle Filling Application

b) Tune PID controller for heat exchanger using DCS
(Any other suitable application)

Note: For each of the experiment carried out, students should prepare a detailed report, clearly specifying following:

[1] Technical description and specification of the system
[3] Components used and their specs
[4] Interconnectivity between the components
[6] Software tools used
[7] Program code (if any) developed
[8] Observations
[9] Photographs of the system

Books Recommended:
3. Industry 4.0: Managing The Digital Transformation, by Alp Ustundag and Emre Cevikcan, Springer, 2018
4. Introduction to Industrial Automation, by Stamatios Manesis and George Nikolakopoulos, CRC Press, 2018

Term Work:
Term work shall consist of minimum requirement as given in the syllabus. The distribution of marks for term work shall be as follows:

Laboratory Performance : 15 marks
Journal : 05 marks
Attendance : 05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:
Oral examination will be based on experiments carried out in EEL604-SBL-III- Industrial Automation Lab
Course Objectives

1. To design and develop a moderately complex electrical/electronic/digital circuit with practical applications.
2. To understand basic concepts of circuit design while developing the project.
3. To enable the students to gain hands-on experience independently proposing and implementing the project and thus acquire the necessary confidence to deal with complex electrical/electronic/digital systems.

Course Outcomes

Upon successful completion of this course, the learner will be able to:

1. Identify problems based on societal /research needs.
2. Apply Knowledge and skill to solve societal problems in a group.
3. Develop interpersonal skills to work as member of a group or leader.
4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
5. Analyse the impact of solutions in societal and environmental context for sustainable development.
6. Use standard norms of engineering practices
7. Excel in written and oral communication.
8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
9. Demonstrate project management principles during project work

A. Mini Project - Topic Selection and Approval

1. The group may be of maximum **FOUR (04) students**.
2. Students should propose project ideas & finalize the project idea in consultation with guide/ HOD. Students should select a problem which addresses some basic home, office or other real life applications. The mini project must have hardware part. The software part is optional.
3. Students should identify different components/ devices, instruments, simulation/emulations software tools required for the project.
4. Students should submit implementation plan in the form of Ganttt/ PERT/ CPM chart, which will cover weekly activity of project.
5. A Log Book to be prepared by each group to record the work progress in terms of milestones per week by students. Weekly comment, remarks to be put by guiding faculty.
B. Mini Project – Execution

i. Design and Fabrication
 a. Initial fabrication of the project by students can be done using standard devices/material/software tools to verify the circuit functionalities. Initial project fabrication and testing is expected to be done by soldering/assembling on general purpose PCB/ Bakelite boards or suitable platforms required for the electrical/electronic/digital components. Discourage the use of breadboards.
 b. If essential, use of a simulation/emulation software tools to test and verify the performance of the circuit should be encouraged.
 c. Students should prepare the proper drawings (electrical/mechanical), schematics/layouts of the project.
 d. For final implementation of the circuit, preparation of PCB (if any required) using suitable CAD tools and fabricating the same in the lab is expected.

ii. Devices/ Components/ Systems to be Used:
 Students are encouraged to use passive components like resistors, capacitors, inductors etc. If any specialize inductor is not readily available, the fabrication of the same in the lab should be encouraged. Other components like: Transistors, diodes, voltage regulators, logic gates, Op-amps, general purpose microcontroller, DC motors/ AC motors, sensors, actuators, relays etc. (Students may add more components as per the requirement of project).

iii. Testing and analysis of the Project
 Students should test the circuit using suitable laboratory equipments like power supply, multi-meter, CRO, DSO etc. In case of any debugging requirement, students should record the problems faced during the testing and solutions sought after for the fault in the circuit.
 All the testing results must be well documented in the final project report verifying the functionalities of the propose project.

iv. Use of Reference Material/Literature:
 Students are advised to refer Application Notes, research publications & data sheets of various electrical/electronic/digital devices from Texas Instruments, Microchips, International Rectifiers, ST Microelectronics, Philips, NXP and many other manufacturers.

C. Project Report Format:
 Mini Project report should include circuit diagram, operation, application, design details, testing, waveforms (if applicable) references, simulation results and final prepared PCB image, conclusion, etc. Project report should include report of all above steps listed in (2) and the conclusion.

Note:-
It is expected that the department should organise some of the guidance expert lectures/video lectures/courses/webinars/workshops etc. for the students at the appropriate timing during the Mini Project practical slots on following topics:
1) Understanding passive components viz. resistors, capacitors and inductors from practical point of view: types/varieties, device packages, applications and cost.
2) Understanding semiconductor components viz. diodes, BJT and JFET/MOSFETs from practical point of view: types/varieties, device packages, applications and cost.
3) Design principles of simple electrical/electronic circuits with some examples.
4) Selection of switches and circuit protection components.
5) Selection and sizing of wires and conductors.
6) Soldering Practice.
7) Heat-sinking and Enclosure design concepts.
8) Overall workmanship while working on the project fabrication.
9) Use of different software tools for design and development of circuits.
11) Use of standard as well as some of the advanced laboratory equipments needed for testing of such projects

Application Domains:
List of key application domains from where students are encouraged to derive Mini Projects topics:

1) Smart Agriculture solutions
2) Power converter applications in various Applications
3) IoT based applications in power systems
4) AI/ML applications in disaster management
5) Renewable Energy
6) Energy Conservation
7) Energy Storage
8) Battery Charging and Protection
9) Fire Safety
10) Electrical System Protection
11) Lighting Control
12) Wireless Power Transfer
13) Electrical Components Testing
14) Electrical Parameters Measurement
15) Non-conventional Electricity Generation
16) Laboratory Equipments
17) E-Mobility / Electric Vehicles
18) Video Surveillance Systems
19) Robotics for Hazardous applications
20) Waste Management System
21) Smart City Solutions
22) Smart Classrooms and learning Solutions
23) Design of Electrical Equipment
24) PLC based automation system
25) Power system Monitoring System (EMS)

It is every much expected that the complexity of the Mini Project 2A/2B should be increased compared to the selection of projects during Mini Project 1A/1B. Also based on the subjects learned in Sem. III and Sem. IV the broader area inclusive of the concepts learned must be selected. Students can identify the mini project topics either from above suggested domains or any other relevant electrical engineering domains. The inter-disciplinary nature of the project is also desirable.

Guidelines for Assessment of Mini Project:

Term Work
- The review/progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual’s contribution in group activity, their understanding and response to questions.
- **Distribution of Term work marks for both semesters shall be as below:**
 - Marks awarded by guide/supervisor based on log book: 10
 - Marks awarded by review committee: 10
 - Quality of Project report: 05
Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year Mini Project:
- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalization of problem
 - Second shall be on finalization of proposed solution of problem.
- In second semester expected work shall be procurement of components/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year Mini Project:
- In this case in one semester students’ group shall complete project in all aspects including,
 - Identification of need/problem
 - Proposed final solution
 - Procurement of components/systems
 - Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalization of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project:
Mini Project shall be assessed based on following criteria;
1. Quality of survey/need identification
2. Clarity of Problem definition based on need.
3. Innovativeness in solutions
4. Feasibility of proposed problem solutions and selection of best solution
5. Cost effectiveness
6. Societal impact
7. Innovativeness
8. Cost effectiveness and Societal impact
9. Full functioning of working model as per stated requirements
10. Effective use of skill sets
11. Effective use of standard engineering norms
12. Contribution of an individual’s as member or leader
13. Clarity in written and oral communication

- In one year, project, first semester evaluation may be based on first six criteria’s and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of half year project all criteria’s in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Oral Examination:
- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions

Oral Examination: Mini Project shall be assessed during oral examination based on following points:
1. Quality of problem and Clarity
2. Innovativeness in solutions
3. Cost effectiveness and Societal impact
4. Full functioning of working model as per stated requirements
5. Effective use of skill sets
6. Effective use of standard engineering norms
7. Contribution of an individual’s as member or leader
8. Clarity in written and oral communication

Reference Books:
6. Archambeault and D. James, PCB Design for Real-World EMI Control, Springer Publications
8. Peter Dalmaris, “Kicad Like a Pro”, Tech exploration

Suggested Software tools:
2. Eagle: https://www.autodesk.in/products/eagle/overview
3. OrCAD: https://www.orcad.com/
5. Webbench: http://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html
6. Tinkercad: https://www.tinkercad.com/

Online Repository:
1. https://www.electronicsforu.com
2. https://circuitdigest.com
3. https://www.electronicshub.org
4. Github