

Enhancing Emergency Response Through IoT: A Review of Smart Accident Alert System

Karan Kadam¹, Mohd Mehraj Shaikh², Aryan Singh³, Prof. Kritida Naik⁴

¹(Computer Engineering, Viva institute of technology, India)

²(Computer Engineering, Viva institute of technology, India)

³(Computer Engineering, Viva institute of technology, India)

⁴(Professor, Computer Engineering, Viva institute of technology, India)

Abstract : The increasing incidence of road traffic accidents poses significant challenges to public safety and emergency response efficiency. This paper presents a novel accident alert system utilizing Internet of Things (IoT) technologies. The system integrates various sensors, including accelerometers, gyroscopes, and GPS modules, to monitor vehicular movements in real-time. Upon detecting an abnormal event indicative of an accident, the system automatically triggers alerts to predefined emergency contacts and local authorities, providing real-time location data for rapid response. Additionally, a mobile application interface enables users to manage notifications and access emergency resources. Experimental results demonstrate the system's effectiveness in accurately detecting accidents and significantly reducing response time, thereby enhancing overall road safety. This approach offers a scalable solution for urban and rural environments, contributing to improved emergency management.

Keywords - Accident alert, IoT, Emergency response, GPS, GSM, Road safety.

I. INTRODUCTION

The rising number of road traffic accidents is a global concern, leading to significant loss of life, injuries, and economic burdens. According to the World Health Organization, approximately 1.35 million people die each year due to road traffic accidents, with millions more suffering from serious injuries. This alarming trend necessitates innovative solutions to enhance road safety and improve emergency response mechanisms. Traditionally, accident detection relies heavily on eyewitness accounts or manual reporting, often resulting in delayed responses that exacerbate the consequences of such incidents. With advancements in technology, particularly in the realm of the Internet of Things (IoT), there is a transformative opportunity to automate accident detection and streamline emergency alerts. IoT-based systems can leverage real-time data from various sensors installed in vehicles, enabling immediate recognition of abnormal driving patterns indicative of accidents. This paper proposes an integrated accident detection and alert system that utilizes IoT technologies to monitor vehicular behavior continuously.

II. LITRATURE REVIEW

A comprehensive survey was conducted on existing literature and products to explore the research gaps. The survey included over 15 relevant papers, listed below, which address various aspects such as Accident Alert System, IoT device, GPS and GSM Module.

Sadda Bharath Reddy, Pulakandla Vivek Reddy, KaveliIndra Reddy [1]: This paper presents a novel approach to enhancing road safety through smart-phone based accident detection. The system is designed to leverage the sensors embedded in Android smart-phones, such as accelerometers and GPS, to detect vehicular accidents automatically. When abnormal sensor readings indicating a potential crash are detected, the system triggers an alert. This alert includes vital information such as the precise location of the accident, gathered via GPS, which is then relayed to emergency services and pre-registered contacts. The primary focus of the system is to

minimize the time taken for emergency response by providing real-time data, thereby potentially reducing fatalities and injury severity. Additionally, the system incorporates machine learning algorithms to reduce false positives, ensuring that alerts are sent only when an actual accident occurs. This paper highlights the feasibility, effectiveness, and potential social impact of using mobile technologies for accident detection and response.

Muhammed Rahman, Iras Muhammad Zeki Mahmood [2]: This paper introduces a novel system designed to enhance road safety by leveraging GPS (Global Positioning System) and GSM (Global System for Mobile Communications) technologies. The system aims to automatically detect accidents involving vehicles and promptly report their locations to emergency services and pre-defined contacts. The proposed framework utilizes an accelerometer to monitor sudden changes in vehicle motion, indicative of a collision. Upon detecting such changes, the system activates a microcontroller that processes the information and retrieves the vehicle's GPS coordinates. These coordinates are then transmitted via GSM to designated emergency responders, ensuring a rapid response to the incident. Additionally, the paper discusses the system's architecture, the integration of hardware components, and the software algorithms employed for effective accident detection and notification. By significantly reducing response times, the system aims to mitigate the consequences of road accidents, potentially saving lives and minimizing injuries.

Sunil. S. Barkade¹, Yuvraj mane¹, Kavita D.Gadekar [3]: This paper presents a novel approach to enhancing road safety through the implementation of an Internet of Things (IoT) framework that utilizes smart sensors for accident detection. The authors emphasize the growing concern of road accidents and their devastating impact, necessitating the development of efficient and timely detection systems. The proposed system leverages an array of sensors, including accelerometers, gyroscopes, and GPS modules, to monitor vehicle behavior and environmental conditions in real-time. When an accident is detected, the system automatically sends alerts to emergency services and registered contacts, significantly reducing response times and potentially saving lives. The paper also discusses the system's architecture, including hardware and software components, and highlights the integration of cloud computing for data storage and analysis. The authors conclude by asserting that this IoT-based solution can be a 6 pivotal step towards creating safer road environments, thereby contributing to the broader field of smart transportation systems.

P. Singh, R. Thakur, A. Kumar [4]: This paper presents an innovative approach to enhancing road safety through the integration of Internet of Things (IoT) technologies. The authors propose a comprehensive system that utilizes various sensors, including accelerometers and GPS, to monitor vehicle dynamics and detect accidents in real time. Upon detecting an accident, the system automatically alerts emergency services and provides critical information such as the location and severity of the incident. The paper emphasizes the use of advanced algorithms for data processing and analysis, enabling rapid response to accidents and minimizing the response time of emergency services. Additionally, the authors highlight the significance of user-friendly interfaces for drivers and emergency responders, ensuring effective communication and coordination during emergencies. The system's design aims to reduce human error and enhance overall traffic safety, showcasing the potential of IoT in transforming road safety protocols.

Sneha Shinde, Siddhant Sonawane, Atish Unhawane, Ankita wadvale [5]: This paper provides a technological solution to address the issue of delayed accident reporting, which often leads to preventable fatalities. The proposed system leverages IoT technology to automatically detect vehicular accidents and promptly notify emergency services. It employs sensors such as accelerometers and GPS to monitor the vehicle's condition, detect abnormal changes in speed or orientation, and determine the exact location of the incident. Upon detecting an accident, the system sends alerts to predefined contacts and emergency services via a GSM module, along with real-time location details. The system is designed to minimize human intervention by automating the entire process, ensuring timely responses in critical situations. This paper also discusses the system's potential to significantly improve emergency response times and reduce accident-related casualties.

Abdulkadir Shehu Bari, Muhammad Abubakar Falalu, Muhammad Auwal Umar [6]: This paper explores the various technologies and methodologies employed in accident detection and alerting systems. The authors provide a comprehensive review of the current trends, emphasizing the role of modern technology, particularly IoT (Internet of Things) and machine learning, in improving real-time accident detection and response. The study compares traditional accident detection mechanisms with advanced systems that use sensors, GPS, and GSM modules to ensure quick alerts to emergency services and contacts. The paper also addresses challenges like system accuracy, the cost-effectiveness of implementation, and the limitations of different technologies. A special focus is given to the integration of mobile applications and cloud-based solutions to enhance accessibility and scalability. The study aims to present a roadmap for future development in accident detection systems, stressing the importance of automation in saving lives.

C. V. Suresh Babu, Akshayah N. S, Maclin Vinola P [7]: This paper presents a comprehensive design for a real-time accident detection and alert system utilizing Internet of Things (IoT) technology. The system aims to provide an efficient and prompt mechanism to detect vehicular accidents and immediately notify emergency services, minimizing response times. The proposed architecture integrates various sensors, such as accelerometers and gyroscopes, to monitor a vehicle's movement and orientation. In case of an accident, the system automatically triggers an alert through GSM or GPS modules, transmitting the vehicle's exact location to preconfigured contacts, emergency responders, or nearby hospitals. The system's ability to quickly relay crucial information enhances the chances of providing timely medical intervention, potentially saving lives. This solution is designed to be cost-effective and scalable, with potential applications in smart city infrastructure and widespread vehicular safety networks.

R. Arora, N. K. Jha, M. Iqbal [8]: This paper provides a comprehensive review of the current landscape of accident detection and reporting systems specifically designed for autonomous vehicles. It outlines the critical importance of effective accident detection mechanisms in enhancing the safety and reliability of autonomous driving technologies. The authors categorize existing systems into various approaches, including sensor-based detection, machine learning algorithms, and integrated communication technologies. The survey discusses the strengths and weaknesses of different methodologies, emphasizing the role of real-time data processing and decision-making capabilities in minimizing response times during accidents. Additionally, it examines the challenges posed by complex traffic environments, sensor limitations, and the necessity for seamless communication between vehicles and infrastructure. The authors conclude by highlighting future directions for research, including the integration of advanced algorithms, improved sensor technologies, and the need for regulatory frameworks to ensure the effectiveness of these systems in real-world scenarios.

M. A. Khan, R. Gupta, A. Srivastava [9]: This paper explores a novel approach to enhancing road safety through the implementation of an Internet of Things (IoT) based accident detection system. The system utilizes a network of sensors, including accelerometers, gyroscopes, and GPS modules, to continuously monitor vehicle dynamics and environmental conditions. Upon detecting an abnormal event, such as sudden deceleration or impact, the system immediately triggers an alert mechanism that notifies emergency services and designated contacts with the vehicle's location and relevant data. The authors detail the architecture of the proposed system, emphasizing its scalability and real-time capabilities. Moreover, they discuss the integration of cloud computing for data storage and analysis, enabling predictive analytics and improved response times in emergency situations. Through extensive testing, the system demonstrated a high detection accuracy rate, significantly contributing to timely assistance and potentially saving lives in critical scenarios. The study highlights the importance of leveraging advanced technology to create more efficient and responsive accident detection solutions.

T. Chakraborty, R. Verma, S. Deshmukh [10]: This paper presents a comprehensive solution to enhance road safety using Internet of Things (IoT) technology. The authors describe a system that detects vehicular accidents in real-time through a combination of sensors, including accelerometers and GPS modules. The system is designed to automatically send alerts to emergency services and designated contacts upon detecting an accident, significantly reducing response times. Furthermore, it incorporates location tracking capabilities, allowing rescue teams to pinpoint the accident site accurately. The paper highlights the importance of seamless communication between the vehicle and external emergency response systems, facilitating timely assistance to the victims. Additionally, the authors discuss the integration of mobile applications to provide real-time notifications to users, enhancing the overall efficiency of emergency management. The proposed system not only aims to mitigate the impact of accidents but also promotes awareness and preparedness for unforeseen road incidents.

Dr. C. K. Gomathy, K Rohan, Bandi Mani Kiran Reddy [11]: This paper focuses on an IoT-based approach for detecting accidents and sending immediate alerts to authorities or emergency contacts. The system utilizes various sensors, including accelerometers and gyroscopes, which are integrated into a vehicle or smart-phone to detect abrupt changes in motion or orientation that signify a potential accident. When an anomaly is detected, the system automatically generates an alert, which includes the location of the accident via GPS, and sends it to predefined contacts or emergency services. The paper discusses the importance of real-time accident detection for minimizing response time, potentially reducing fatalities and the severity of injuries. It also highlights the challenges in ensuring accurate detection and avoiding false alarms, while emphasizing the need for low-cost, accessible technology solutions for widespread adoption.

T. Chakraborty, R. Verma, S. Deshmukh [12]: This paper discusses a novel system designed to enhance road safety through timely detection and reporting of vehicle accidents. The proposed system utilizes an array of Internet of Things (IoT) devices, including sensors that monitor vehicle parameters such as speed, acceleration, and tilt, enabling real-time data collection. In the event of an accident, these sensors trigger an automatic notification system that promptly alerts emergency services and designated contacts, significantly reducing response time. The authors also incorporate machine learning algorithms to analyze data patterns, improving the accuracy of accident detection while minimizing false positives. Furthermore, the system's architecture is designed to be cost-effective and scalable, making it accessible for widespread implementation in various vehicle types. This integration of IoT technology not only enhances emergency response but also promotes proactive measures in accident prevention, contributing to safer roadways.

B Sumathy, L Sundari, S Janani Priyadarshini [13]: This paper discusses the design and implementation of a system aimed at enhancing post-accident emergency response using IoT-based technologies. The system focuses on detecting accidents in real-time and immediately alerting emergency services and relevant authorities to minimize response time and potentially save lives. Key features of the system include the integration of sensors such as accelerometers and GPS modules to detect abrupt changes in vehicle movement, which could indicate a collision. Upon detection, the system transmits location data along with accident details to predefined contacts via SMS or a mobile application. The authors emphasize the system's capacity to reduce the latency between an accident and the arrival of emergency assistance, particularly in remote or high-risk areas. The paper also explores future enhancements, such as improving the precision of accident detection algorithms and extending the system to various vehicle types.

Ashuka Kamble, Prof. Shingate, P. S. Ghorpade [14]: This paper presents a system designed to detect road accidents and promptly alert emergency services through IoT integration. The system uses sensors like accelerometers and gyroscopes to detect unusual vehicle movements that indicate a crash. Upon detecting an accident, it sends an alert message containing the exact GPS coordinates of the accident site via a GPS modem, making tracking 5 more accurate. The data is sent to predefined contacts, such as emergency services or family members, ensuring swift assistance. The proposed system aims to reduce response time in postaccident scenarios, improving the chances of survival for victims. By utilizing IoT, the system is both cost-effective and scalable, making it feasible for widespread implementation, especially in areas with a high frequency of accidents. This paper highlights the integration of IoT in safety-critical applications like accident detection.

Nazia Parveen, Aleem Ali, Ashif Ali [15]: This paper presents a comprehensive framework aimed at enhancing road safety through the integration of Internet of Things (IoT) technologies in vehicles. The authors discuss the increasing incidence of road accidents and the need for timely accident detection and response mechanisms. The proposed system utilizes various sensors, including accelerometers and GPS, to monitor vehicle parameters and detect sudden changes indicative of an accident. Upon detection, the system automatically sends alerts to emergency contacts and nearby medical services, providing real-time information about the accident location. The paper highlights the significance of such a system in reducing response time in emergencies, potentially saving lives and minimizing injuries. Additionally, it discusses the advantages of IoT-based solutions over traditional systems, emphasizing their ability to provide automated alerts and enhance communication during critical situations. Overall, this research contributes to the growing field of smart transportation and showcases the potential of IoT in improving road safety.

III. ANALYSIS

In this analysis table summarize the research papers on Accident Alert System. Below is a detailed of various algorithm and methodologies employed in the previous studies and highlighting their applications and relevance to our system.

Title	Technology Used	Advantages	Disadvantages
[1] Android Accident Detection and Alert System [2024]	<ul style="list-style-type: none"> - Sensors Integration - Accident alert Algorithms - Emergency SMS Communication 	<ul style="list-style-type: none"> - User Safety - Affordable - Accessible - Rapid Response 	<ul style="list-style-type: none"> - Device Compatibility - Limited Situational Awareness - Maintenance and Power

[2] Accident Detection and Reporting System Using GPS and GSM [2024]	<ul style="list-style-type: none"> - Sensors - GPS - GSM - Accelerometer 	<ul style="list-style-type: none"> - Accurate positioning and Immediate alert - Accessible Inexpensive 	<ul style="list-style-type: none"> - GSM network coverage - Potential delays Battery consumption
[3] IoT-Based Accident Detection System Using Smart Sensors [2024]	<ul style="list-style-type: none"> - IoT - Vibration Sensors - Smart Sensors - GSM Modem 	<ul style="list-style-type: none"> - Highly Sensitive to Crashes - Real-time Detection - Automated Response 	<ul style="list-style-type: none"> - False Positives From Non-Accidental Impacts - Sensor Calibration Required
[4] IoT-Based Smart Traffic Accident Detection and Response System Using Algorithm [2024]	<ul style="list-style-type: none"> - IoT - Machine Learning - GSM 	<ul style="list-style-type: none"> - Real-time Detection Using Machine Learning to Improve Accuracy - Adaptive to varying Traffic Conditions 	<ul style="list-style-type: none"> - Requires a Robust Dataset for Training - Potential Network Dependency for Real-Time Responses
[5] IoT-Based Vehicle Accident Detection System [2023]	<ul style="list-style-type: none"> - IoT (Internet of Things) - Accelerometer - Cloud Server - User Interface 	<ul style="list-style-type: none"> - Automatic Alert System - Easy Integration with Vehicles - Cost-effective Solution 	<ul style="list-style-type: none"> - Reliability on Network Coverage - Maintenance and Power - Dependence on Software
[6] Accident Detection and Alerting Systems: A Study [2023]	<ul style="list-style-type: none"> - Sensors and Devices - Communication Protocol - Embedded Systems - User Interface 	<ul style="list-style-type: none"> - Better accuracy - Increased Safety - Efficient time consume - Low power used 	<ul style="list-style-type: none"> - Increase the overall cost of the vehicle - Damage to the sensor - Blockage of Signal Complexity
[7] IoT-Based Smart Accident Detection and Alert System [2023]	<ul style="list-style-type: none"> - Real-Time Data Transmission - GSM Module - Software Interface - IoT (Internet of Things) 	<ul style="list-style-type: none"> - Immediate Alerts - Potential Life Saver - Automated Response - Data Analysis 	<ul style="list-style-type: none"> - Sensor Accuracy Issues - Power Consumption - Dependency on Vehicle Power
[8] A Survey on Accident Detection and Reporting Systems for Autonomous Vehicles [2023]	<ul style="list-style-type: none"> - Autonomous Vehicle Sensors - Machine Learning Algorithms - User Interface 	<ul style="list-style-type: none"> - High Accuracy - Effective in Real-time - Low battery consumption 	<ul style="list-style-type: none"> - Complex Infrastructure - High Computation Cost - Damage to the sensor - Blockage of Signal

[9] IoT-Enabled Accident Detection System Using Sensors [2023]	<ul style="list-style-type: none"> - IoT device - GPS - Sensors - Software Interface 	<ul style="list-style-type: none"> - High accuracy - Rapid Response - Scalable 	<ul style="list-style-type: none"> - Sensor maintenance required - Network reliability issues
[10] IoT-Based Accident Detection System with Location Tracking and Real-Time Notifications [2023]	<ul style="list-style-type: none"> - IoT - GPS Modem - GSM Modem 	<ul style="list-style-type: none"> - Precise Location Tracking - Real-time Notifications 	<ul style="list-style-type: none"> - Dependent on Reliable GPS signals - High Implementation Cost
[11] Accident Detection and Alert System [2022]	<ul style="list-style-type: none"> - Microcontrollers - Sensing Technology - GSM Modules - Machine Learning Algorithms 	<ul style="list-style-type: none"> - Rapid Emergency Response - Real-time Location Tracking - Scalable Technology 	<ul style="list-style-type: none"> - False Positives - Privacy Concerns - Maintenance and Calibration
[12] IoT-Integrated Smart Vehicle Accident Detection and Notification System [2022]	<ul style="list-style-type: none"> - IoT Sensor - GPS - GSM - Cloud Computing 	<ul style="list-style-type: none"> - Enhanced Safety - Fast Emergency Alerts - Automated Accident Reporting 	<ul style="list-style-type: none"> - Technical Complexity - Sensor Maintenance Required - Network Reliability Issues
[13] Vehicle Accident Emergency Alert System [2021]	<ul style="list-style-type: none"> - Sensors and Detection - Communication Modules - Data Processing - Alert Mechanism 	<ul style="list-style-type: none"> - Rapid Response - Enhanced Safety - Automated Alerts - Integration with Existing Systems 	<ul style="list-style-type: none"> - Technical Limitations - Privacy Concerns - Dependency on Networks - Complexity in Integration
[14] IoT-Based Accident Detection and Tracking System Using GPS Modem [2020]	<ul style="list-style-type: none"> - IoT Integration - Sensors - GPS Modem - Data Processing 	<ul style="list-style-type: none"> - Immediate Alerts - Accident Detection - Enhanced Safety - Data Logging 	<ul style="list-style-type: none"> - Technical Complexity - Dependence on Technology - Data Security
[15] IoT-Based Automatic Vehicle Accident Alert System [2020]	<ul style="list-style-type: none"> - IoT Devices - GPS - GSM - Cloud Computing 	<ul style="list-style-type: none"> - User Safety - Real-time Accident Detection - Automatic Notification 	<ul style="list-style-type: none"> - Reliable Internet Connectivity - Potential for False Alerts - Dependence on System

IV. CONCLUSION

In conclusion, an effective “Accident Alert System” plays a crucial role in enhancing road safety and ensuring timely emergency response. By integrating advanced technologies such as IoT, sensors, and machine learning algorithms, these systems provide real-time monitoring and rapid notification capabilities that can significantly reduce the response time in critical situations. The ability to detect accidents automatically and alert emergency services can lead to better outcomes for accident victims, minimizing the potential for fatalities and severe injuries. Additionally, such systems not only support immediate crisis management but also contribute to long-term traffic safety improvements through data analysis and trend identification. The continuous evolution of these technologies promises to make accident detection systems more accurate and efficient, ultimately fostering safer driving environments. As urbanization and vehicle usage increase, the implementation of these systems will be vital in addressing the growing concerns surrounding traffic accidents.

Acknowledgements

We would like to express a deep sense of gratitude towards our guide Prof. Kritida Naik, Department of Computer Engineering for her constant encouragement and valuable suggestions. The work that we are able to present is possible because of her timely guidance.

We would like to pay gratitude to the panel of examiners their time, effort they put to evaluate our work and their valuable suggestions time to time.

We would like to thank Project Head of the Department of Computer Engineering, Prof. Kirtida Naik for her support and co-ordination.

We would like to thank In-Charge Head of the Department of Computer Engineering, Prof. Sunita Naik for her support and co-ordination.

We are also grateful to teaching and non-teaching staff of Department of Computer Engineering who lend their helping hands in providing continuous support.

REFERENCES

- [1] Sadda Bharath Reddy, Pulakandla Vivek Reddy, KaveliIndra Reddy, "Android Accident Detection and Alert System" MATEC, 2024.
- [2] Muhammed Rahman, Iras Muhammad Zeki Mahmood, "Accident Detection and Reporting System Using GPS and GSM" ICCEC, 2024.
- [3] Sunil. S. Barkade1, Yuvraj mane1, Kavita D.Gadekar, "IoT-Based Accident Detection System Using Smart Sensors" IJIRT, 2024.
- [4] P. Singh, R. Thakur, A. Kumar, "IoT-Based Smart Traffic Accident Detection and Response System Using Algorithm" IEEE, 2024.
- [5] Sneha Shinde, Siddhant Sonawane, Atish Unhawane, Ankita wadvale, "Iot-Based Vehicle Accident Detection System" IRJMETS, 2023.
- [6] Abdulkadir Shehu Bari, Muhammad Abubakar Falalu, Muhammad Auwal Umar, "Accident Detection and Alert Systems: A Study" ICAENS, 2023.
- [7] C. V. Suresh Babu, Akshayah N. S, Maclin Vinola P, "Iot-Based Smart Accident Detection and Alert System" IEEE, 2023.
- [8] R. Arora, N. K. Jha, M. Iqbal, "A Survey on Accident Detection and Reporting Systems for Autonomous Vehicles" IEEE, 2023.
- [9] M. A. Khan, R. Gupta, A. Srivastava, " IoT-Enabled Accident Detection System Using Sensors" IEEE, 2023.
- [10] T. Chakraborty, R. Verma, S. Deshmukh, "IoT-Based Accident Detection System with Location Tracking and Real-Time Notifications" IEEE, 2023.

- [11] Dr. C. K. Gomathy, K Rohan, Bandi Mani Kiran Reddy, "Accident Detection and Alert System" JECA, 2022.
- [12] T. Chakraborty, R. Verma, S. Deshmukh, "IoT-Integrated Smart Vehicle Accident Detection and Notification System" IEEE, 2022.
- [13] B Sumathy, L Sundari, S Janani Priyadarshini, "Vehicle Accident Emergency Alert System" RIACT, 2021.
- [14] Ashuka Kamble, Prof. Shingate, P. S. Ghorpade, "Iot-Based Accident Detection and Tracking System Using GPS Modem" IERJ, 2020.
- [15] Nazia Parveen , Aleem Ali , Ashif Ali , "IoT-Based Automatic Vehicle Accident Alert System" JECA, 2020.

