
SKIN CANCER DETECTION THROUGH IMAGE ANALYSIS AND MACHINE LEARNING TECHNIQUE

Vikrant Pawar¹, Jay Rupareliya², Shrikant Bhise³, Prof. Sunita Naik⁴

¹(Department Computer Engineering, Mumbai University, India)

²(Department Computer Engineering, Mumbai University, India)

³(Department Computer Engineering, Mumbai University, India)

⁴(Assistant Professor, Department Computer Engineering, Mumbai University, India)

Abstract: Skin cancer, including melanoma, basal cell carcinoma, and squamous cell carcinoma, is a growing health concern primarily linked to UV radiation exposure. Symptoms often manifest as abnormal moles, new growths, or changes in existing skin lesions. Factors such as ozone layer depletion and lifestyle choices contribute to its increasing prevalence, underscoring the need for early detection to improve treatment outcomes. The Skin Cancer Detection Website provides a user-friendly and accessible solution for preliminary diagnosis. By allowing users to upload images of skin lesions, the platform employs advanced AI algorithms to assess potential malignancy risks and generate personalized recommendations, such as seeking professional medical consultation. Additionally, the platform offers educational resources on symptoms, risk factors, and prevention strategies. By integrating AI-driven analysis with health awareness initiatives, this system empowers individuals to take proactive steps in managing their skin health, promoting early detection, and potentially reducing the overall burden of skin cancer.

Keywords - Artificial Intelligence, Early Detection, Machine Learning, Prevention, Skin Cancer.

I. INTRODUCTION

Skin cancer develops when skin cells multiply uncontrollably, often due to prolonged UV radiation exposure from natural sunlight or artificial sources like tanning beds. This radiation induces genetic alterations that interfere with normal cellular functions, leading to various types of skin cancer, including basal cell carcinoma, squamous cell carcinoma, and melanoma—the most aggressive form. Detecting skin cancer at an early stage is essential for enhancing treatment success and reducing fatality rates. With advancements in technology, machine learning (ML) has transformed skin cancer diagnosis by facilitating automated image analysis of skin lesions. The process begins with high-resolution image acquisition of the affected area, followed by preprocessing techniques designed

to improve clarity and isolate the region of interest (ROI). Convolutional Neural Networks (CNNs) play a crucial role in analyzing distinctive patterns associated with malignancy, enhancing diagnostic precision. After extracting these features, they are categorized using Artificial Neural Networks (ANNs), with optimization methods like Improved Grey Wolf Optimization (IGWO) further refining model performance. A diverse and well-labeled dataset is vital for training these models effectively, ensuring optimal accuracy, sensitivity, and specificity. Despite these advancements, several challenges hinder clinical implementation. Many research efforts primarily emphasize model accuracy, often neglecting practical concerns such as integration into mobile health applications or hospital-based decision support systems. Additionally, dataset limitations and biases reduce the generalizability of AI-driven models across various skin tones and ethnic backgrounds. This study introduces a refined approach by leveraging the VGG16 architecture for feature extraction, differentiating itself from conventional methods that rely on hybrid models or extensive manual feature engineering. By harnessing deep feature extraction capabilities and combining them with optimized preprocessing techniques, our system enhances image clarity and improves the distinction between malignant and benign lesions. This approach bridges the gap between AI-based detection and real-world clinical applications, offering faster and more precise assessments that encourage timely medical intervention. Ultimately, this contributes to scalable and accessible diagnostic solutions for both clinical settings and mobile healthcare applications.

II. REVIEW OF LITERATURE SURVEY

Pedro M. M. Pereira et al. [1] explored the potential of 3D imaging techniques in melanoma detection, highlighting how traditional AI-based diagnostic systems relied solely on 2D images, which could sometimes lead to misclassification due to a lack of depth-related features. Their study demonstrated that integrating 3D surface imaging with machine learning models could significantly enhance classification accuracy, particularly in detecting melanoma-specific surface texture, elevation changes, and border irregularities. The authors highlighted that 3D imaging could provide dermatologists with a more detailed visual representation of lesions, potentially reducing false positives and false negatives. However, the study also identified challenges, particularly regarding hardware requirements and computational costs, as 3D imaging required specialized sensors and higher processing power. They suggested that future research should focus on developing cost-effective, mobile-compatible 3D imaging solutions, making the technology more accessible for widespread clinical use.

Lubna Riaz et al. [2] addressed the challenges of early skin cancer detection, emphasizing the importance of advanced image analysis in improving diagnostic accuracy. While significant advancements in dermoscopic imaging had facilitated early diagnosis of skin abnormalities, their study primarily focused on utilizing the HAM10000 dataset to identify multiple skin conditions. Their approach integrated advanced preprocessing techniques, such as noise reduction and contrast enhancement, to minimize distortions in lesion images and improve classification precision. Furthermore, they combined Convolutional Neural Networks (CNNs) and Local Binary Patterns (LBP) for feature extraction, which demonstrated improved generalization and practical applicability across different lesion types. However, their findings indicated that the model's effectiveness was limited by dataset diversity, and they recommended expanding future research to include more comprehensive datasets covering a broader range of skin types and lesion variations.

Raissa Schiavoni et al. [3] introduced a microwave reflectometry-based system for non-invasive skin cancer detection, offering a promising alternative to traditional dermoscopic imaging techniques. Their study demonstrated that microwave technology could effectively differentiate between malignant and benign lesions, making it a valuable tool for early-stage skin cancer detection and monitoring. The system was experimentally validated, proving its potential for rapid and objective diagnostic support. It was also portable, user-friendly, and capable of providing quick responses, making it an appealing option for low-cost, large-scale cancer screenings. However, the study acknowledged that microwave reflectometry had lower resolution than dermoscopic imaging, limiting its effectiveness in detecting small or subtle lesion abnormalities. The authors suggested that combining microwave reflectometry with high-resolution optical imaging techniques could create a hybrid diagnostic system, leveraging the strengths of both modalities to improve the accuracy and reliability of AI-assisted skin cancer detection.

Muhammad Imran Faizi et al. [4] proposed an efficient region-of-interest (ROI) detection method, aiming to improve computational efficiency while maintaining classification accuracy. Their study introduced template matching techniques in combination with grayscale conversion and Haralick feature extraction, which significantly reduced processing overhead. Unlike traditional CNN models that required extensive training on large datasets, their method achieved high accuracy while minimizing computational complexity, making it particularly suitable for real-time applications in mobile health technologies. Their research further highlighted that lightweight AI models could be instrumental in resource-constrained medical environments, such as rural healthcare centers and telemedicine-based skin cancer screening platforms. They suggested that future improvements could involve adaptive template matching, where AI dynamically adjusts feature extraction based on lesion characteristics, thus further enhancing the robustness of mobile AI-driven skin cancer diagnostics.

H. L. Gururaj et al. [5] analyzed the growing prevalence of UV-induced skin cancer and explored the potential of deep learning-based classification techniques in improving diagnostic efficiency. Their study revealed that CNNs, particularly those fine-tuned through transfer learning, significantly enhanced classification accuracy. However, they pointed out that hyperparameter optimization played a crucial role in determining model performance, as improperly tuned networks tended to overfit smaller datasets.

Stephanie S. Noronha et al. [6] conducted an in-depth review of deep learning techniques in dermatological disease detection, focusing on their applicability in real-world medical practice. Their findings confirmed that CNN-based architectures achieved significantly higher classification accuracy compared to traditional machine learning models. However, their study identified several challenges, including high computational costs, dataset limitations, and domain-specific variations in lesion appearance. They suggested that integrating hybrid AI models, which combined deep learning with expert-driven dermatological knowledge, could lead to more reliable and interpretable diagnostic systems.

Khalid M. Hosny, Doaa Elshoura et al. [7] examined the role of segmentation in melanoma detection, emphasizing its impact on overall classification accuracy. Their research demonstrated that poor segmentation techniques could lead to substantial misclassifications, as they might exclude critical lesion features or introduce unnecessary background noise. The study reviewed various segmentation strategies, including thresholding, contour detection, and deep learning-based segmentation, concluding that hybrid approaches combining traditional and AI-driven

segmentation performed best. The authors highlighted the need for more robust segmentation techniques that adapted dynamically to different image conditions, ensuring precise lesion isolation. They also suggested that integrating unsupervised segmentation with self-learning AI models could provide more generalizable solutions applicable across different imaging datasets.

Azhar Imran et al. [8] developed an ensemble model that combined VGG, Caps-Net, and ResNet architectures, demonstrating that multi-model fusion significantly improved classification robustness. Their study showed that combining different feature extraction techniques enhanced model performance, reducing false positives and false negatives in melanoma detection. By leveraging the strengths of different architectures, their ensemble model achieved higher classification accuracy compared to single-model approaches. However, they acknowledged that ensemble models increased computational requirements, making them less suitable for mobile-based implementations. They suggested that future research should focus on optimizing ensemble learning algorithms, allowing them to run efficiently on lightweight hardware while maintaining high accuracy.

Saban Ozturk et al. [9] focused on resolving class imbalance issues in skin cancer datasets, particularly those related to melanoma detection. Traditional deep learning models tended to favor majority classes, leading to biased predictions and high false negative rates for rare lesion types. To address this challenge, they proposed a deep clustering method utilizing COM-Triplet loss, which enabled the model to learn more representative feature embeddings for underrepresented lesion classes. Their approach outperformed standard data augmentation and transfer learning methods, which often failed to resolve bias effectively. However, they suggested that integrating domain-specific augmentation techniques and multi-modal imaging approaches could further enhance classification accuracy, especially when dealing with complex and rare lesion cases.

Rehan Ashraf et al. [10] examined the role of transfer learning in melanoma detection, utilizing the AlexNet model to optimize classification accuracy. Their study demonstrated that pretrained deep learning models significantly outperformed traditional CNNs, especially when applied to small and specialized dermatology datasets. By using transfer learning, they reduced the need for large-scale annotated datasets, which often pose a challenge in medical AI research. However, they also noted that fine-tuning pretrained models was essential to prevent overfitting and to ensure adaptability to specific lesion types. The study suggested that combining transfer learning with real-time clinical feedback could improve model reliability, allowing AI-based systems to continuously learn from dermatologist evaluations and improve over time. They also recommended that future research should explore hybrid models, integrating multiple pretrained architectures to enhance robustness in skin lesion classification.

Krishna Mridha et al. [11] developed a Clinical Decision Support System (CDSS) aimed at assisting dermatologists in classifying skin lesion images with higher confidence. Their research emphasized the need for Explainable Artificial Intelligence (XAI), which allowed AI-based diagnostic models to provide human-readable justifications for their predictions. By implementing perturbation-based explanation techniques, their system enabled users, particularly dermatologists, to gain insight into why a lesion was classified as malignant or benign. This aspect significantly improved trust in AI-powered medical applications, as clinicians could verify and validate AI-driven decisions before making critical medical recommendations. Despite the promising results, the authors suggested that more extensive real-world validation was required to refine the system and ensure reliable clinical deployment across different dermatological conditions.

Guang Yang et al. [12] reviewed multiple AI-based classification approaches, including supervised, semi-supervised, self-supervised, and ensemble learning techniques. Their study found that self-supervised learning showed particular promise, as it allowed AI models to learn from unlabeled medical images, reducing dependency on manually annotated datasets. They emphasized that AI-based skin cancer detection still faced major challenges, particularly in real-world dataset generalization and interpretability of model decisions. They recommended that future research should focus on developing more explainable AI models, ensuring that dermatologists can understand the reasoning behind AI predictions. Additionally, their review highlighted the potential of ensemble learning methods, which combine multiple machine learning models to create a more robust and accurate classification system.

Peng Chen et al. [13] analyzed the effectiveness of AI-driven self-diagnosis platforms for early skin cancer detection, finding that real-time AI-based assessment tools helped users identify suspicious lesions early. Their study showed that AI-driven mobile applications and websites empowered individuals to take proactive steps in managing their skin health. However, they warned that these tools should only act as preliminary screening aids, not as replacements for professional dermatological consultations. They emphasized the need for clinical validation of AI-powered self-diagnosis systems to ensure their accuracy and reliability across different demographics and skin types.

Anwesha Mohanty et al. [14] examined the impact of dataset limitations on AI-driven skin disease analysis, emphasizing that smaller datasets often led to overfitting and poor model generalization. Their study highlighted that GANs (Generative Adversarial Networks) could be used to generate synthetic training data, helping AI models learn from a more diverse range of skin lesion images. They argued that dataset expansion through synthetic data generation could improve classification accuracy, particularly in detecting rare skin conditions. However, they also noted that GAN-generated images needed careful validation to ensure they accurately represented real-world lesions. They recommended that future studies should explore combining synthetic and real-world data to improve AI model performance while maintaining clinical reliability.

Ahmed Magdy et al. [15] analyzed the impact of AI-powered computer-assisted diagnostic (CAD) systems in enhancing medical decision-making. Their study demonstrated that AI-driven tools significantly improved dermatologist confidence, particularly in cases where visual diagnosis alone was insufficient. By integrating machine learning algorithms with expert medical knowledge, their model provided a secondary level of analysis, reducing the likelihood of human error in diagnosis. However, they also stressed that AI systems should not replace clinical expertise but rather function as a supportive tool. They advocated for a human-in-the-loop framework, where AI-generated predictions are verified by trained dermatologists before making final diagnostic decisions. Their findings further highlighted the need for real-world validation of CAD systems in hospitals and clinics to ensure their long-term feasibility and acceptance in medical practice.

III. ANALYSIS

Table 1: Analysis Table

Sr. No.	Technology Used	Advantages	Disadvantages
[1]	Deep Clustering, Margin Free-Triplet Loss	1.Improved Rare Lesion Detection 2.Effective for Imbalanced Datasets	1. Difficult Training 2.Resource Intensive
[2]	Convolutional Neural Networks (CNNs)	1.Accurate Skin Cancer Detection 2.Efficient Transfer Learning	1.Large and Diverse Dataset Requirement 2.Generalization Challenges
[3]	Deep Learning	1.High-Precision Detection 2. Enhanced Disease Classification	1.High Computational Power Requirement
[4]	Computer Vision Algorithms	1. Automated Image Analysis	1.Complex Training 2.Resource Intensive
[5]	Data Augmentation, Deep (CNNs)	1.Improved Generalization with Data Augmentation	1. Dependence on Large Annotated Datasets
[6]	Deep Learning Segmentation Networks	1.Detailed Skin Lesion Boundaries	1. Resource Heavy Models
[7]	K-Means Clustering	1. Simple & Efficient Implementation 2.Real-Time Application Suitability	1. Limitations on Irregular Shapes
[8]	Data Augmentation.	1.Efficient use of limited data.	1. Relying on augmented data
[9]	Microwave Reflectometry, Low-Cost Sensors	1. Cost-Effective Skin Cancer Detection 2.Accessible Diagnostic Tool	1.Lower Resolution than Other Techniques
[10]	Convolutional Neural Networks, Optimization	1.Reduced Dermatologist Workload 2.High-Accuracy Classification	1. Detailed Skin Lesion Information

[11]	Transfer Learning	1.High Precision Detection 2.Early Diagnosis Improvement	1.Requires Specialized Expertise
[12]	Machine Learning Techniques, Clinical Image Analysis	1.Comprehensive Review of Techniques	1.Limited Specificity to Skin Cancer Detection
[13]	Skin Disease Analysis	1. Limited Data with Framework for Skin Disease Analysis	1. Limited Scope for Large-Scale Application
[14]	Recurrent Attentional Convolutional Networks	1. Enhanced Segmentation of Lesions	1. Computationally Intensive
[15]	Region-of-Interest (ROI) Detection, Transfer Learning	1. ROI Detection for Accuracy	1.Transfer Learning Limitations

IV. SYSTEMATIC OVERVIEW

This diagram provides a structured overview of the relationships between Research Papers, Systems/Models, and Gaps in the domain of skin lesion detection.

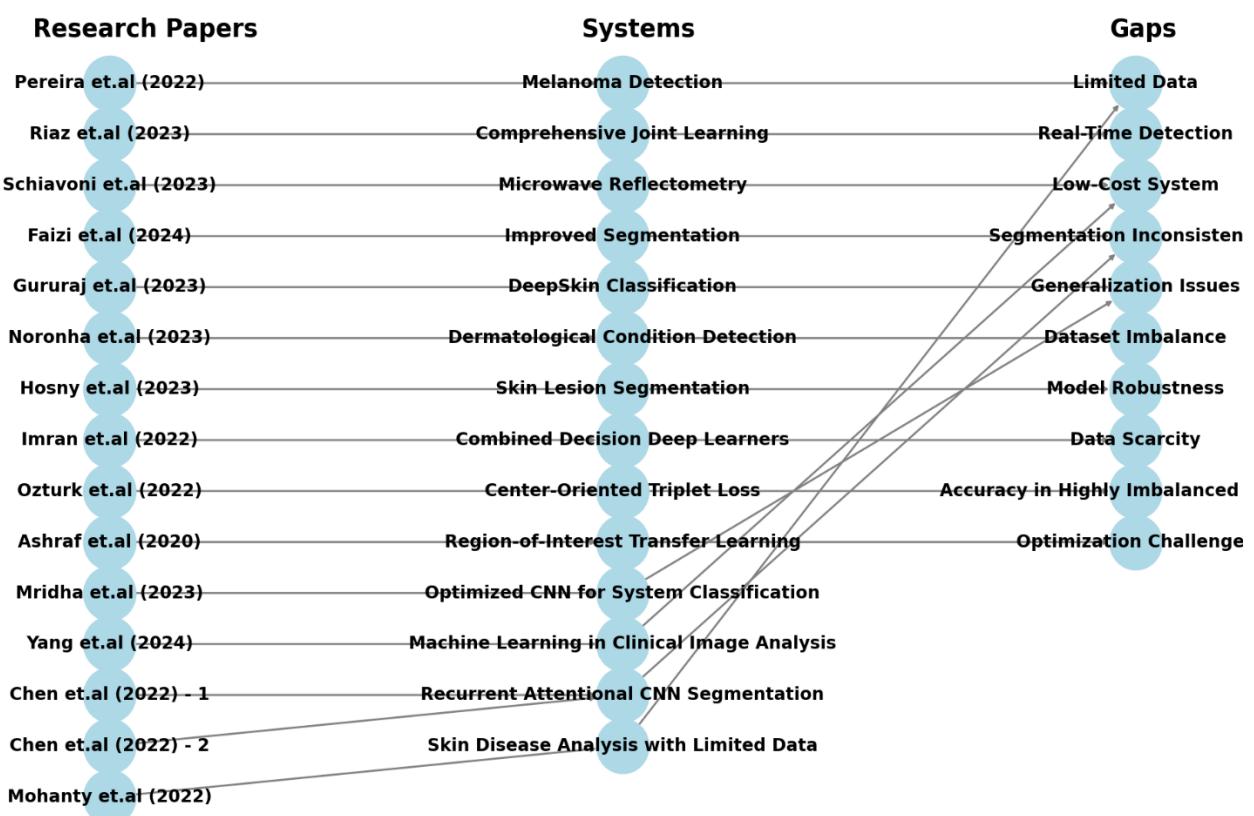


Fig.1: Systematic Overview

The development of skin lesion detection systems is based on a comprehensive analysis of existing research, which provides critical insights into advanced techniques and methodologies. These studies introduce a range of approaches, including deep learning architectures, segmentation techniques, and optimization strategies, which are applied in systems such as Melanoma Detection, DeepSkin Classification, and Dermatological Condition Detection. The process begins with the collection of high-quality dermoscopic images, ensuring that the input data is both clear and clinically relevant. Various preprocessing techniques, including contrast enhancement, noise reduction, and region-of-interest (ROI) isolation, are employed to refine the images, making them suitable for further analysis. Feature extraction is a key step in this process, where deep learning models such as Convolutional Neural Networks (CNNs) are utilized to identify critical lesion characteristics. Pretrained architectures like VGG16, AlexNet, and ResNet are often fine-tuned using transfer learning to enhance accuracy while reducing the need for extensive labeled datasets. These models analyze important lesion attributes such as shape, texture, color variation, and border irregularities, which are crucial for differentiating between benign and malignant lesions. Once the features are extracted, classification algorithms process this information to make predictions about skin lesion types, assisting dermatologists in early diagnosis and treatment planning. While these AI-driven systems have significantly improved the accuracy and efficiency of skin lesion classification, several challenges remain, as indicated in the diagram. One of the primary concerns is segmentation inconsistency, where automated techniques struggle to precisely delineate lesion boundaries, especially for irregular or fuzzy lesions. Another major challenge is dataset imbalance, where models are often trained on datasets with an unequal distribution of benign and malignant cases, leading to biased predictions. Generalization issues arise when models trained on specific datasets fail to perform well on diverse populations, limiting their real-world applicability. Additionally, some methods face optimization challenges, particularly in terms of computational efficiency, making them less suitable for real-time clinical applications. Other limitations include data scarcity, especially in rare skin conditions, and accuracy concerns in highly imbalanced datasets, which can lead to an increase in false positive or false negative diagnoses. Addressing these limitations requires a multifaceted approach. To overcome segmentation inconsistencies, researchers are working on refining deep learning-based segmentation models by integrating attention mechanisms and hybrid architectures that combine CNNs with transformer models for improved lesion boundary detection. To resolve dataset imbalances and generalization issues, synthetic data generation techniques, such as Generative Adversarial Networks (GANs), can be used to augment training datasets, ensuring a more diverse representation of skin lesion variations. Additionally, the integration of ensemble learning techniques, where multiple deep learning models work together to improve classification accuracy, can enhance robustness. Real-time detection capabilities can be improved through lightweight AI models optimized for mobile and edge computing, enabling faster and more efficient skin cancer screening in remote and resource-limited settings. Furthermore, explainable AI (XAI) techniques are being developed to make AI-driven skin lesion detection more interpretable for dermatologists, ensuring that automated predictions align with expert clinical reasoning. The structured progression from research analysis to system development and refinement establishes a clear framework for advancing AI-driven skin lesion detection. By continuously improving dataset quality, segmentation precision, model generalization, and real-time performance, future systems can achieve higher diagnostic reliability and greater clinical impact, ultimately aiding in the early detection and treatment of skin cancer.

V. CONCLUSION

In conclusion, the proposed system leverages AI-driven technology and deep learning models to enhance the early detection and prevention of skin cancer. By integrating advanced feature extraction techniques and optimized preprocessing methods, the system improves accuracy and efficiency in analyzing skin lesions. The user-friendly interface allows individuals to upload images for real-time risk assessment, empowering proactive skin health management. While this system does not replace professional diagnosis, it serves as a valuable clinical support tool by increasing awareness, facilitating early detection, and assisting in timely medical intervention. The study also highlights the practical implications of AI-driven skin cancer detection, including potential deployment in mobile applications and real-world healthcare settings. By providing educational resources, long-term tracking, and accessibility enhancements, this system has the potential to significantly reduce the burden of skin cancer and contribute to improved patient outcomes.

Acknowledgements

We would like to express our sincere gratitude to the organization for their invaluable support and contribution throughout this project.

REFERENCES

- [1] P. M. M. Pereira *et al.*, "Multiple Instance Learning Using 3D Features for Melanoma Detection," in *IEEE Access*, vol. 10, pp. 76296-76309, 2022
- [2] L. Riaz *et al.*, "A Comprehensive Joint Learning System to Detect Skin Cancer," in *IEEE Access*, vol. 11, pp. 79434-79444, 2023
- [3] R. Schiavoni, G. Maietta, E. Filieri, A. Masciullo and A. Cataldo, "Microwave Reflectometry Sensing System for Low-Cost in-vivo Skin Cancer Diagnostics," in *IEEE Access*, vol. 11, pp. 13918-13928, 2023
- [4] Faizi, Muhammad & Adnan, Syed. (2024). Improved Segmentation Model for Melanoma Lesion Detection Using Normalized Cross-Correlation-Based k -Means Clustering. *IEEE Access*. PP. 1-1. 10.1109/ACCESS.2024.3360223.
- [5] H. L. Gururaj, N. Manju, A. Nagarjun, V. N. M. Aradhya and F. Flammini, "DeepSkin: A Deep Learning Approach for Skin Cancer Classification," in *IEEE Access*, vol. 11, pp. 50205-50214, 2023.
- [6] S. S. Noronha, M. A. Mehta, D. Garg, K. Kotecha and A. Abraham, "Deep Learning-Based Dermatological Condition Detection: A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions," in *IEEE Access*, vol. 11, pp. 140348-140381, 2023.
- [7] K. M. Hosny, D. Elshoura, E. R. Mohamed, E. Vrochidou and G. A. Papakostas, "Deep Learning and Optimization-Based Methods for Skin Lesions Segmentation: A Review," in *IEEE Access*, vol. 11, pp. 85467-85488, 2023.
- [8] Imran, A. Nasir, M. Bilal, G. Sun, A. Alzahrani and A. Almuhaimeed, "Skin Cancer Detection Using Combined Decision of Deep Learners," in *IEEE Access*, vol. 10, pp. 118198-118212, 2022.

- [9] Ş. Öztürk and T. Çukur, "Deep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly Imbalanced Datasets," in *IEEE Journal of Biomedical and Health Informatics*, vol. 26, no. 9, pp. 4679-4690, Sept. 2022.
- [10] R. Ashraf *et al.*, "Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection," in *IEEE Access*, vol. 8, pp. 147858-147871, 2020.
- [11] K. Mridha, M. M. Uddin, J. Shin, S. Khadka and M. F. Mridha, "An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System," in *IEEE Access*, vol. 11, pp. 41003-41018, 2023.
- [12] Yang, Guang & Luo, Suhuai & Greer, Peter. (2024). Advancements in skin cancer classification: a review of machine learning techniques in clinical image analysis. *Multimedia Tools and Applications*. 1-28. 10.1007/s11042-024-19298-2.
- [13] P. Chen, S. Huang and Q. Yue, "Skin Lesion Segmentation Using Recurrent Attentional Convolutional Networks," in *IEEE Access*, vol. 10, pp. 94007-94018, 2022.
- [14] A. Mohanty, A. Sutherland, M. Bezbradica and H. Javidnia, "Skin Disease Analysis With Limited Data in Particular Rosacea: A Review and Recommended Framework," in *IEEE Access*, vol. 10, pp. 39045-39068, 2022.
- [15] Magdy, Ahmed & Hussein, Hadeer & Abdel-kader, Rehab & Salam, Khaled. (2023). Performance Enhancement of Skin Cancer Classification Using Computer Vision. *IEEE Access*. PP. 1-1. 10.1109/ACCESS.2023.3294974.
- [16] <https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://link.springer.com/book/10.1007/978-1-4612-3790-7&ved=2ahUKEwjP1ceWru2KAxXNrjYBHXYSOikQFnoECBcQAO&usg=AOvVaw3HbNb2Btg71csRlqvTYqyz>
- [17] https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.springerpub.com/the-melanoma-handbook-9781620701188.html%3Fsrsltid%3DAfmBOoohc3dx5OV9-PX3FDn6_rK7Kdr9atcLyQxqgr_WrL5hOczuwZnI&ved=2ahUKEwjwg_bJve2KAxXOg68BHRFNNcYQFnoECBHQ&usg=AOvVaw0w5CBGAz4EK2w1wwJvuREc
- [18] Ward WH, Farma JM, editors. Cutaneous Melanoma: Etiology and Therapy [Internet]. Brisbane (AU): Codon Publications; 2017 Dec 21. PMID: 29461771.
- [19] PDQ Cancer Genetics Editorial Board. Genetics of Skin Cancer (PDQ®): Health Professional Version. 2025 Jan 3. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. PMID: 26389333.
- [20] Gloster HM Jr, Brodland DG. The epidemiology of skin cancer. *Dermatol Surg*. 1996 Mar;22(3):217-26. doi: 10.1111/j.1524-4725.1996.tb00312.x. PMID: 8599733.
- [21] Guerra KC, Zafar N, Crane JS. Skin Cancer Prevention. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 30137812.