

Review On UrbanVision AI

Suruchi Sawant¹, Khushbu Pasi², Madhu Thakur³, Akshata Raut⁴

¹(Department of Computer Engineering, VIVA Institute of Technology, Mumbai University, India)

²(Department of Computer Engineering, VIVA Institute of Technology, Mumbai University, India)

³(Department of Computer Engineering, VIVA Institute of Technology, Mumbai University, India)

⁴(Department of Computer Engineering, VIVA Institute of Technology, Mumbai University, India)

Abstract: The Urban Development Planning Tool is a web-based application designed to support urban planners, developers, and city officials in making informed decisions regarding urban development. By utilizing advanced mapping technologies, AI-powered entity detection, and comprehensive analysis tools, the system enables the evaluation of urban areas and offers data-driven recommendations for development. Incorporating OpenStreetMap data, geospatial analysis, and machine learning, the tool provides real-time insights into urban landscapes, assisting stakeholders in optimizing land use, improving infrastructure planning, and promoting sustainable urban growth. As cities expand, the platform also empowers residents to participate in discussions about their local environments. It enables individuals to explore their neighborhoods, identify areas in need of improvement, and engage in meaningful dialogues on potential changes. By creating an interactive mapping experience, users can search for specific locations, view surrounding areas within a 1 km radius, and generate static images to visualize their neighborhood's current state.

Keywords - AI-driven urban planning, Sustainable city development, Urban area analysis, Data-driven decision-making, Smart cities technology, MERN stack platform.

1. INTRODUCTION

Urban planning in underdeveloped regions is critical for fostering sustainable growth and improving the quality of life for residents. As cities and towns expand, effective planning is required to ensure proper land use, efficient infrastructure development, and equitable distribution of resources. However, the planning process in these regions often faces significant challenges, including limited access to reliable data, insufficient infrastructure, and the absence of all-encompassing tools for analysing urban environments with advancements in technology, software-based solutions have emerged as powerful tools for addressing these challenges without requiring extensive hardware.

By leveraging satellite imagery, geographic information systems (GIS), and machine learning algorithms, urban planners can now assess the current state of regional development, identify gaps, and propose targeted improvements. These solutions allow for the integration of vast amounts of data, such as land use, population density, road networks, and environmental factors, enabling more informed decision-making. To develop a software application that utilizes Google Maps and geospatial data to aid in urban planning for underdeveloped regions. By analysing satellite images and other publicly available datasets, the system will provide recommendations on optimal land use, infrastructure improvements, transportation planning, and resource allocation. Through advanced algorithms, the system will also be able to predict future growth patterns and propose sustainable development strategies. The project will focus on the following key objectives:

Data Collection and Analysis: Using publicly available geospatial data, including satellite imagery and demographic information, to assess the current state of the regional area. **Predictive Urban Planning:** Leveraging machine learning techniques to predict future urban growth and infrastructure needs. **Visualization and**

Recommendations: Developing an interactive interface that provides urban planners with visual insights and actionable recommendations for sustainable urban development.

By combining cutting-edge technologies such as GIS, machine learning, and Google Maps API, this project will contribute to the efficient planning of regional areas, helping to bridge the gap between underdeveloped and developed regions. The software will serve as a tool for urban planners and policymakers, facilitating data-driven decisions to ensure balanced and sustainable urban growth. This approach eliminates the need for physical hardware and focuses entirely on utilizing existing software and data infrastructure, making it a cost-effective solution for urban planning in regions with limited resources.

2. LITERATURE SURVEY

Integration of GIS and CAD data to perform interactive preliminary environmental analyses at district scale by Bing-Shiuan Tsai ,^[1] explores the integration of Geographic Information Systems (GIS) and Computer-Aided Design (CAD) data to perform preliminary environmental analyses at the district level. The study involves the creation of a parametric 3D model of a building using the Grasshopper platform, which is then embedded into a 3D urban model of the area where the building is planned. This integrated 3D model is used to conduct analyses such as shadow studies, solar exposure, and wind patterns. These analyses provide architects and engineers with valuable insights during the early stages of the project's design. This work stems from collaborative efforts between professionals in both the GIS and Architecture, Engineering, and Construction (AEC) sectors, focused on understanding the data and software requirements for such integrated analyses.

Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities by Abbas Sharifi ,^[2] Their the application of artificial intelligence (AI) in digital twin models, particularly in the context of stormwater infrastructure within smart cities. Digital twins, which are virtual representations of physical systems, can be enhanced by real-time data captured from sensors embedded within urban infrastructure. These sensors collect data on various parameters such as energy consumption, temperature, and weather conditions, enabling a more comprehensive understanding of the infrastructure's performance. With the increasing use of machine learning and advanced data visualization techniques, digital twins are becoming crucial in sectors ranging from manufacturing to urban planning. In the case of stormwater management, digital twin models are applied to urban drainage systems, offering new opportunities to improve the design and functionality of water management systems in urban environments.

Planning on the Verge of AI, or AI on the Verge of Planning by Thomas W. ^[3] The convergence of artificial intelligence (AI) and urban planning is significantly transforming city management and design. Current systems utilize AI for data analysis, predictive modeling, and scenario simulations, enhancing decision-making and resource allocation. AI tools help urban planners assess development strategies and promote sustainability by analyzing historical data. Additionally, AI facilitates public engagement through sentiment analysis, allowing cities to better understand citizen feedback. However, challenges like data privacy, algorithmic bias, and the necessity for interdisciplinary collaboration persist. As AI technology continues to advance, its integration into urban planning will evolve, aiming to create smarter, more responsive urban environments..

Free and Open Source Urbanism by Winston Yap,^[4] promotes collaborative and transparent urban planning practices using open-source principles. This movement emphasizes community engagement and the use of free software and data to enhance urban development. Current systems in FOSU focus on creating accessible tools and platforms that allow citizens and planners to collaborate on urban design projects. These tools often include open-source geographic information systems (GIS), data visualization applications, and participatory design platforms, enabling stakeholders to share knowledge and resources effectively. Research indicates that FOSU encourages inclusivity and innovation by allowing diverse community members to participate in the planning process. However, challenges such as ensuring data quality, addressing digital divides, and maintaining long-term sustainability of open-source projects remain significant.

3D Modelling Building of District Johar Baru Using ArcGIS Pro and CityEngine by Edi Sugianto ,Johan Fernando Hosea ^[5] The use of 3D modeling in urban planning has gained traction with tools like ArcGIS Pro and CityEngine, particularly in projects like modeling the district of Johar Baru. Current systems leverage these advanced GIS technologies to create detailed and accurate representations of urban environments. ArcGIS Pro is known for its powerful data visualization capabilities, allowing planners to analyze spatial data effectively and make informed decisions. It integrates with CityEngine, which specializes in 3D city modeling, enabling the creation of realistic urban scenarios that consider various factors, such as land use and zoning regulations. Research indicates that this combination enhances stakeholder engagement by providing interactive models that can be easily manipulated and visualized. These tools facilitate better communication among planners, architects, and the community, allowing for a more collaborative approach to urban development.

ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions by Lasith Niroshan, ^[6] In this paper, we have presented the integration of machine learning (ML) into OpenStreetMap (OSM) has opened new avenues for enhancing the quality and usability of geospatial data. Current research focuses on

automating various aspects of map editing and data validation, leveraging ML algorithms to analyze large datasets and identify patterns that increase the reliability and completeness of OSM. One significant research gap identified is the limited application of ML techniques to handle unstructured data, such as text and images, which could enrich OSM data. Moreover, it is essential need of better algorithms that can efficiently process and classify diverse geographic features. Existing systems often struggle with data sparsity and inconsistencies, which ML could help address through advanced predictive analytics and anomaly detection.

Intelligent transportation systems in smart city: a systematic survey by Muhammad Abul Hassan [7] the role of Intelligent Transportation Systems (ITS) as vital components in smart cities, utilizing advanced technologies to enhance urban mobility and transportation efficiency. Through a systematic review of existing ITS frameworks, it highlights key features and trends, such as the integration of real-time data from sources like sensors, cameras, and GPS devices to monitor traffic conditions. By employing artificial intelligence (AI) and machine learning algorithms, these systems can analyze data to improve traffic management, reduce congestion, and enhance overall safety.

Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda By Tan Yigitcanlar, [8] A conceptual framework focuses on the ethical application of AI by local governments to drive urban innovation. AI is deployed in various sectors, such as traffic and waste management, to optimize services through data analytics. The use of AI tools also facilitates greater citizen engagement via digital platforms, fostering transparency and trust. The framework stresses the importance of addressing challenges such as data privacy, algorithmic biases, and equitable access in order to fully leverage AI's potential in urban development. The paper also discusses successful case studies, providing insights into strategies that ensure ethical AI use in local governance.

Geographic Information Systems (GIS) in Urban Planning Ph.D. Sonila Xhafa , [9] the role of Geographic Information Systems (GIS) in urban planning, especially as cities undergo structural and functional transformations due to rapid urbanization. GIS helps urban planners evaluate changes in a spatial context, enabling them to effectively manage land use and urban environments. This approach ensures that both physical and social infrastructures meet the needs of the community while adhering to sustainability goals. GIS proves essential in understanding complex relationships within urban spaces, making it an indispensable tool for modern urban planning.

Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms Anuja Arora, [10] A provides an in-depth exploration of multi-agent systems in the context of smart cities, outlining the application areas and future research directions. Key domains such as smart homes, smart governance, smart environments, and smart mobility benefit from the integration of technologies like Information and Communication Technologies (ICT), Artificial Intelligence (AI), and the Internet of Things (IoT). This combination helps improve public service delivery, optimize transportation networks, conserve energy, and enhance public safety, creating smarter, more efficient urban spaces.

Smart Cities and Sustainable Development: Global Scenario Hillol Biswas [11] discusses the intersection of smart cities and sustainability in a multidimensional cyber-physical world. The increasing use of data from various sources provides ample opportunities to explore untapped potentials. The ethical application of artificial intelligence (AI) can accelerate efforts toward sustainable development in smart cities globally. The article emphasizes the importance of defining and measuring smart cities based on specific parameters and highlights innovations that contribute to the consistent development of both smart cities and sustainability initiatives. Additionally, the chapter features a case study using machine learning techniques to analyze open-source parking data from Birmingham, United Kingdom.

Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends Md Eshrat E. Alahi [12] The article explores the recent advancements in integrating IoT and AI in smart city environments, particularly with the role of 5G networks. It focuses on the contribution of AI algorithms to smart city applications and how IoT and AI together offer tremendous opportunities to enhance urban life. The integration of these technologies promises to improve sustainability, productivity, and the overall quality of life for city dwellers. By exploring the potential of IoT and AI, the paper provides valuable insights into how these innovations will shape the future of smart cities.

2.1 Analysis Table

The following table presents the objective analysis of the research conducted.

2.1 Analysis Table

Title	Technology Used	Advantages	Disadvantages
Integration of GIS and CAD data to perform interactive preliminary environmental analyses at district scale [1]	The integration of GIS and CAD in this paper brings several technological advancements to urban planning and environmental analysis. GIS is utilized to provide spatial and geographic context at the district scale, allowing planners and architects, land use, and infrastructure.	It enhances urban planning by providing a detailed and accurate understanding of the environmental effects of new construction.	One potential drawback is the complexity involved in integrating GIS and CAD tools, which often use different data formats and structures.
Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities [2]	Machine learning is a key technology in the system, enabling predictive analytics and real-time decision-making. AI processes the vast amounts of data generated by the sensors, offering predictions for maintenance, system failures, or flood risks.	The real-time monitoring and data-driven insights provided by the sensors allow for more proactive maintenance, reducing the need for costly repairs.	The lack of a standardized definition for digital twins, leading to inconsistencies in its application across different sectors.
Planning on the Verge of AI, or AI on the Verge of Planning [3]	The primary technologies discussed include data analysis, predictive modeling, scenario simulations, and sentiment analysis. These tools help urban planners make informed decisions by analyzing historical data, simulating potential future scenarios, and understanding public sentiment.	AI enhances decision-making processes by providing data-driven insights and predictions, allowing planners to assess a broader range of potential outcomes and make more informed choices.	AI systems require vast amounts of data, and concerns about how that data is collected, stored, and used raise privacy issues for both individuals and communities.

Free and Open Source Urbanism [4]	<p>Geographic Information Systems (GIS): Used for spatial analysis, mapping, and visualizing urban data.. Application Programming Interfaces (APIs): Many tools are API-based, allowing developers to integrate urban data into planning models.</p>	<p>Being opensource, these tools are freely available, reducing software costs for urban planners.</p>	<p>Steep Learning Curve: Some tools require technical expertise, particularly in coding or data manipulation.</p>
3D Modelling Building of District Johar Baru Using ArcGIS Pro and CityEngine [5]	<p>ArcGIS Pro:A GIS platform that offers tools for spatial data analysis, 3D modeling, and mapping. It is used for creating 3D visualizations of urban landscapes.</p> <p>CityEngine:A procedural 3D modeling software, specialized for creating and visualizing large-scale urban environments. It allows users to generate 3D representations of buildings, streets, and other urban infrastructure based on GIS data.</p>	<p>The combination of ArcGIS Pro and CityEngine allows for detailed 3D modeling of urban areas, city planning and architectural design.</p>	<p>Cost: These are Proprietary software solutions that require paid licenses, making them less accessible for low-budget projects.</p>
ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions [6]	<p>Machine Learning (ML): Various ML techniques are explored to automate the entire map updating process.</p> <p>Deep Learning Models: These are proposed to analyze satellite images and street-level data to detect changes in infrastructure. inconsistencies and fill in missing data.</p>	<p>ML techniques can rapidly process large datasets from multiple sources, reducing the time it takes to update maps and improving the accuracy of geographic information.</p>	<p>Setting up and maintaining ML models for map updates require significant computational resources and expertise.</p>

Intelligent transportation systems in smart city [7]	Mobile Applications: Provide users with real-time information on enhancing user experience and decision-making. Smart Public Transport Solutions: Innovations like GPS tracking and automated scheduling improve the efficiency and reliability of public transit systems. Mobility as a Service (MaaS): Platforms that integrate various transportation.	Provides a detailed analysis of various technologies and methodologies in intelligent transportation systems, helping readers understand the current landscape.	Discussions on data collection and usage might raise concerns about privacy and security, which can hinder public acceptance and trust.
Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework Research Agenda[8]	Big Data Analytics: This technology processes and analyzes large volumes of data collected from IoT devices and other sources. operations and services. Cloud Computing: Cloud platforms provide the infrastructure. Blockchain: Used for secure and transparent Transactions.	It promotes the Responsible use of technology, ensuring that urban innovations address pressing challenges effectively while maximizing benefits such as increased efficiency, cost savings, and improved quality of life for residents.	High implementation costs, data privacy concerns, and the need for ongoing management and maintenance can pose significant hurdles. there is a risk that the benefits of AI may not be equitably distributed, potentially widening social inequalities.
Smart Cities and Sustainable Development: Global Scenario[9]	Mobile Applications: Provide users with real-time information on traffic, public transport, and alternative routes, enhancing user experience and decisionmaking. Smart Public Transport Solutions: Innovations like GPS tracking and automated scheduling Mobility as a Service (MaaS): Platforms that integrate various	Provides a detailed analysis of various technologies and methodologies in intelligent transportation systems, helping readers understand the current landscape.	Discussions on data collection and usage might raise concerns about privacy and security, which can hinder public acceptance and trust.

	transportation services into a single accessible service for users, enhancing convenience.		
Geographic Information Systems (GIS) in Urban Planning[10]	The technologies associated with GIS in urban planning include: Spatial Databases: These store and manage spatial data efficiently. Remote Sensing: This technology captures data about the Earth's surface through satellites or aerial photography. Geospatial Analysis Tools.	GIS provides planners with comprehensive spatial data analysis, leading to more informed decisions regarding land use and infrastructure development.	The effectiveness of GIS depends on the quality and availability of spatial data. Incomplete or outdated data can lead to poor decision making.
Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms[11]	The paper utilizes multi-agent systems (MAS) combined with Artificial Intelligence (AI), Internet of Things (IoT), and (ICT) to manage smart city operations like smart homes, mobility, and governance.	MAS improves efficiency, scalability, and problem solving across sectors in smart cities.	The complexity of coordination and communication between agents can pose challenges.
(AI) for Smart City Scenario: Recent Advancements and Future Trends [12]	Smart Sensors: Smart sensors collect data from the environment, such as temperature, humidity, traffic, and energy usage. Networking Infrastructure: Ensures the connectivity and communication between various components of a smart city, including sensors, devices, and data centers.	The integration of IoT and AI in smart cities significantly boosts efficiency, sustainability, and quality of life. IoT devices collect real-time data and enhanced public services.	The extensive data collection raises issues about data breaches and surveillance, while the complexity of integrating various technologies can be daunting.

3. PROPOSED SYSTEM

3.1 Framework:

1. DATA COLLECTION

2. PRE-PROCESSING THE DATA

3. MODEL TRAINING FOR URBAN DEVELOPMENT PREDICTION

4. TESTING AND EVALUATION

5. DEPLOYMENT

4. CONCLUSION

The **UrbanVision AI project** is designed to integrate cutting-edge technologies to provide an efficient tool for urban analysis and planning. The detailed design framework outlined ensures seamless development and implementation of the project, making certain that all components function together effectively. The inclusion of AI in urban planning and vision projects marks a significant advancement in building smarter, more responsive, and sustainable cities. By utilizing technologies like data analytics, predictive modeling, scenario simulations, and sentiment analysis, AI helps urban planners make data-driven decisions, optimize the distribution of resources, and foster sustainability. AI-powered systems offer valuable insights into optimizing urban development across key areas such as traffic management, energy efficiency, and community involvement, making cities more adaptable and efficient in the face of future challenges. In essence, AI holds tremendous potential to transform urban planning, contributing to cities that are more livable, resilient, and sustainable. The integration of these technologies into urban planning initiatives will play a crucial role in shaping the future of smart cities and enhancing the quality of life for urban residents.

REFERENCES

- [1] Tsai, B.-S., Huizer, L., Giampaolo, M., Monté, S., Gong, S., Garcia, G., and Agugiaro, G.: Integration of GIS and CAD data to perform interactive preliminary environmental analyses at district scale, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W10-2024, 169–176.
- [2] Hu, Li. (2023). Research on the Application of Digital Twin in Smart Cities. Advances in Economics, Management and Political Sciences. 42. 14-20.
- [3] Sanchez, T.W. Planning on the Verge of AI, or AI on the Verge of Planning. Urban Sci. 2023, 7, 70.
- [4] ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions 28 Jun 2024 21 pages.
- [5] Winston Yap , Patrick Janssen .Free and open source urbanism: Software for urban planning practice,Computers, Environment and Urban Systems,Volume 96,2022.
- [6] Muhammad Abul Hassan, Farhat Ullah Intelligent Transportation Systems in Smart City: A Systematic Survey 2024
- [7] Eshrat E. Alahi , Arsanchai Sukkuea Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trendsh 2024.

- [8] Tan Yigitcanlar ,Juan M. Corchado ,Rashid Mehmood Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agendagh.
- [9] Xhafa, Sonila & Kosovrasti, Albana. (2024). Geographic Information Systems (GIS) in Urban Planning. European Journal of Interdisciplinary Studies.
- [10] Arora, Anuja & Jain, Dr & Yadav, Divakar & Hassija, Vikas & Chamola, Vinay & Sikdar, Biplob. (2023). Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms. PP. 1-1.
- [11] Wolniak, Radosław & Stecuła, Kinga. (2024). Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities. 7.
- [12] Ortega-Fernández, A.; Martín-Rojas, R.; García-Morales, V.J. Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability. Sustainability 2024, 12, 7860.
- [13] Mandourah, Ammar, and Hartwig H. Hochmair. "Analysing the use of OpenAerialMap images for OpenStreetMap edits." Geo-spatial Information Science (2024): 1-16.
- [14] Amati, Marco, Quentin Stevens, and Salvador Rueda. "Taking play seriously in urban design: the evolution of Barcelona's Superblocks." Space and Culture 27.2 (2024): 156-171.
- [15] Cugurullo, Federico, et al. "The rise of AI urbanism in post-smart cities: A critical commentary on urban artificial intelligence." Urban Studies 61.6 (2024): 1168-1182.