

MedEase: Streamlined Medical Supply Chain

Dilip Yadav¹, Luvkush Gupta², Premanshu Sharma³, Prof. Kirtida Naik⁴

¹(Computer Engineering, Viva institute of technology, India)

²(Computer Engineering, Viva institute of technology, India)

³(Computer Engineering, Viva institute of technology, India)

⁴(Professor, Computer Engineering, Viva institute of technology, India)

Abstract : *MedEase is a groundbreaking e-commerce platform designed exclusively for licensed medical professionals, providing an efficient and streamlined solution for bulk pharmaceutical procurement. The platform features a comprehensive catalog of medicines and medical supplies, complete with detailed product descriptions, dosage guidelines, and real-time inventory updates. With its intuitive user interface, MedEase simplifies the process of searching, comparing, and ordering medical products. Incorporating robust prescription verification processes, the platform ensures secure and compliant transactions, safeguarding both suppliers and buyers. Leveraging advanced technologies, MedEase offers real-time stock monitoring, personalized recommendations, and seamless bulk ordering capabilities. By optimizing the medical supply chain, MedEase minimizes lead times and enhances operational efficiency for healthcare providers. This innovative approach prioritizes compliance, accessibility, and reliability, empowering medical professionals with a hassle-free procurement experience tailored to their needs.*

Keywords - e-commerce, healthcare logistics, medical supply chain, pharmaceutical procurement, prescription verification.

I. INTRODUCTION

The demand for better access to pharmaceutical products for healthcare professionals led to a genesis of medical procurement systems as a solution to the constraints of conventional supply chains. Generally, the process used to involve rigid compliance with manual procurement processes, which demanded intensive communications, negotiations, and extensive human involvement. These were mainly for the purpose of negotiation, and they only started to see the advent of primitive e-commerce platforms, which opened up access to a variety of medical supplies. Yet, these first-generation systems had no flexibility and compliant mechanisms and did not cover aspects sought after by medical professionals, including bulk ordering, prescription verification, and other regulatory compliance policies.

Individualization of such systems through a choice of, for instance, basic online catalogs and payment gateways allowed the browsing and purchase of medical products. The systems were an improvement from manual procurement but failed to address issues such as wide pricing variations, supply chain fragmentation, and reduced scalability. Various platforms were general-purpose and did not meet the unique needs of licensed medical practitioners and healthcare institutions. With the onset of smart tech and artificial intelligence, other platforms are coming up that contain great features-real-time inventory checking, customized recommendations, and secure transaction processing. This innovation promises the modern medical professional the ability to streamline procurement workflows, cut operational costs, and promise a timely arrival of supplies. Many existing platforms face issues like making sure that they stay compliant with stringent health regulations while keeping sensitive data secure along with offering usability for the layperson and non-techies.

In this paper, MedEase, a high-end e-commerce platform intended strictly for licensed medical personnel, is hereby introduced as a solution to meet long-standing issues in pharmaceutical procurement. MedEase fuses new technologies with a profound emphasis on user experience to offer an intuitive, safe, and fully functional procurement experience. A real-time stock update, predictive technology for prescriptions and orders, and distribution alerts.

II. LITERATURE REVIEW

A comprehensive survey was conducted on existing literature and products to explore the research gaps and shortcomings in current systems related to pharmaceutical e-commerce. The survey included over 14 relevant papers, listed below, which address various aspects such as usability, AI integration, e-commerce functionality, and medical recommendations.

Zhaojian Cui, Zhenming Yuan, Yingfei Wu, Xiaoyan Sun, and Kai Yu [1]: This paper explores intelligent recommendation systems based on medical knowledge graphs. The authors propose a model that uses structured knowledge representation to improve department recommendations in healthcare systems. While the methodology enhances accuracy and personalization, it is primarily limited to recommendation tasks and lacks integration with broader e-commerce functionalities like dynamic inventory management or regulatory compliance.

Muhammad Saad, Ashraf Zia, Mushtaq Raza, Mahwish Kundi, and Muhammad Haleem [2]: The authors conduct a comprehensive analysis of healthcare website usability features, focusing on testing techniques and common issues. Their findings highlight critical gaps in user-centered design and accessibility features. However, the study does not address the specific needs of pharmaceutical e-commerce, such as prescription verification or bulk order handling, which are vital for licensed medical professionals.

César González Fernández, Isaac Martín De Diego, Alberto Fernández-Isabel, and Juan Fernando Jiménez [3]: This study employs semi-supervised learning techniques to identify low-credibility medical websites. By analyzing website characteristics, the authors develop a model to classify and flag unreliable sources. While effective for credibility assessment, the model does not extend its application to secure transactions or compliance verification for pharmaceutical platforms.

Nitish Thorat, Yash Punna, Jay Narayane, Sourav Waje, and Geeta Navale [4]: The authors present an e-commerce medicine website deployed on AWS, incorporating prescription verification. Their system ensures secure and compliant transactions but lacks features like personalized recommendations and dynamic pricing, which are crucial for professional medical users.

Pritam Bhuiya, Rohit Malik, Aritra Rana, and Md. Ashifuddin Mondal [5]: This paper introduces a personalized medicine recommendation and disease flagging model based on previous user orders. While the approach enhances customer experience, it is not tailored to the needs of bulk pharmaceutical procurement or multi-user functionalities required by medical professionals.

Aprajita Kimta and Reena Dogra [6]: The authors analyze the future prospects and challenges of artificial intelligence in India's pharmaceutical sector. The study emphasizes the potential of AI in streamlining supply chain processes. However, it lacks practical examples of how AI can be integrated into specialized e-commerce platforms.

Dushyant Goyal, Eera Gaur, Aurangzeb Hussain, and Dr. Anjali Singhal [7]: This paper discusses the development of Ezycart, a multi-vendor e-commerce website. While the platform facilitates vendor management, it does not address the specialized requirements of pharmaceutical procurement, such as regulatory compliance and prescription validation.

Rasha Al-Mahrouqi, Khalsa Al Siyabi, and Amani Al Nabhani [8]: The study focuses on the design and implementation of an e-commerce web app in Azure Cloud. The cloud-based infrastructure ensures scalability and reliability. However, the system lacks sustainability considerations and specific features for managing pharmaceutical products.

Veer Patel and Manan Shah [9]: The authors explore the applications of artificial intelligence and machine learning in the pharmaceutical industry. They highlight the potential for these technologies to enhance precision medicine but do not discuss their integration into e-commerce systems for medical professionals.

Giuseppe Desolda, Giovanni Dimauro, and Andrea Esposito [10]: This study introduces a human–AI interaction paradigm applied to rhinocytology. The methodology provides insights into AI applications in medical diagnostics but does not address its integration into pharmaceutical e-commerce platforms.

Olga Bitkina, Jaehyun Park, and Hyun K. Kim [11]: The authors propose a framework for human–AI interaction to improve user engagement in medical systems. While innovative, the framework does not extend to specialized e-commerce functionalities like order management or prescription verification.

Li Tong, Wenqi Shi, and Monica Isgut [12]: This paper integrates multi-omics data with electronic health records (EHR) for precision medicine. The advanced AI techniques used can be adapted for personalized medicine procurement but are not discussed in the context of e-commerce.

EL FALAH Zineb, RAFALIA Najat, and ABOUCHABA KA Jaafar [13]: The authors explore the potential of e-commerce as a transformative approach for business. Their findings emphasize the importance of user experience and security but lack details on addressing regulatory challenges specific to pharmaceutical procurement.

Lin Zhang and Wolfgang Wilhelm [14]: The study identifies problems and countermeasures in the development of medicine e-commerce. While it provides valuable insights into existing gaps, it does not address the integration of emerging technologies like AI for enhanced user experience.

Huaqian He, Guijun Zhou, and Shuang Zhao [15]: This research applies fusion sentiment analysis methods to improve e-commerce product experiences. While the approach enhances user satisfaction, it does not address bulk procurement or prescription verification needs.

This literature review highlights the limitations of existing systems and underscores the need for an integrated solution like *MedEase*. This platform aims to bridge these gaps by combining regulatory compliance, AI-driven recommendations, dynamic inventory management, and a user-centric interface tailored for licensed medical professionals.

III. ANALYSIS

The analysis table summarizes the research papers on pharmaceutical e-commerce platforms and recommendation systems. Below is a detailed description of various algorithms and methodologies employed in the referenced studies, highlighting their applications and relevance to the *MedEase* platform.

Title	Technology Used	Advantages	Disadvantages
Intelligent Recommendation for Departments Based on Medical Knowledge Graph[1]	<ul style="list-style-type: none"> - Medical Knowledge Graph - AI Recommendation Systems 	<ul style="list-style-type: none"> - Provides targeted recommendations - Enhances departmental efficiency 	<ul style="list-style-type: none"> - Requires extensive data for accuracy - Integration challenges - Complexity in maintaining the graph
A Comprehensive Analysis of Healthcare Websites Usability Features, Testing Techniques, and Issues[2]	<ul style="list-style-type: none"> - Usability Testing - Web Analytics - UX Tools 	<ul style="list-style-type: none"> - Identifies usability features - Insights into website performance 	<ul style="list-style-type: none"> - Usability findings may not be universal - Requires ongoing updates

Detecting Low-Credibility Medical Websites Through Semi-Supervised Learning Techniques[3]	<ul style="list-style-type: none"> - Semi-Supervised Learning - Machine Learning 	<ul style="list-style-type: none"> - Detects low-credibility sites - Improves information reliability 	<ul style="list-style-type: none"> - Requires a large amount of data - Challenges with adapting to new misinformation types
An E-commerce Medicine Website Deployed on AWS with Prescription Verification[4]	<ul style="list-style-type: none"> - AWS Cloud - Prescription Verification Systems 	<ul style="list-style-type: none"> - Scalable infrastructure - Ensures prescription authenticity - Efficient processing and storage 	<ul style="list-style-type: none"> - High setup costs - Dependence on cloud services - Security risks and compliance issues
Personalized Medicine Recommendation and Disease Flagging Model Based on User's Previous Orders[5]	<ul style="list-style-type: none"> - AI Recommendation Systems 	<ul style="list-style-type: none"> - Provides tailored medicine recommendations - Identifies disease patterns based on order history - Enhances personalized health 	<ul style="list-style-type: none"> - Risk of over-reliance on past data - Privacy concerns - Potential for biased recommendations
Artificial Intelligence in the Pharmaceutical Sector of India: Future Prospects and Challenges[6]	<ul style="list-style-type: none"> - Artificial Intelligence (AI) in drug discovery, clinical trials, and personalized medicine 	<ul style="list-style-type: none"> - Accelerates drug discovery process. - Enhances clinical trial accuracy. - Reduces development costs. 	<ul style="list-style-type: none"> - High initial investment. - Requires specialized expertise. - Regulatory and ethical concerns.
Ezycart: Multivendor E-Commerce Website[7]	<ul style="list-style-type: none"> - Multivendor platform architecture - Payment gateway integration 	<ul style="list-style-type: none"> - Multiple sellers on one platform - Streamlined payment processing 	<ul style="list-style-type: none"> - Complex vendor management - Potential for marketplace disputes
E-commerce Web App in Azure Cloud: Considerations, Components of Implementation and Schematic Design[8]	<ul style="list-style-type: none"> - Azure cloud services - Serverless architecture, SQL databases 	<ul style="list-style-type: none"> - Scalable infrastructure - High availability and security 	<ul style="list-style-type: none"> - Cloud service costs - Dependency on third-party cloud provider
Artificial Intelligence and Machine Learning in the Pharmaceutical Industry[9]	<ul style="list-style-type: none"> - AI and Machine Learning in drug discovery, development, and manufacturing 	<ul style="list-style-type: none"> - Speeds up drug discovery. - Enhances prediction accuracy for efficacy and safety. 	<ul style="list-style-type: none"> - Requires large data sets. - Model interpretation complexity. - Ethical concerns on data privacy.

A Human-AI Interaction Paradigm and its Application to Rhinocytology[10]	<ul style="list-style-type: none"> - AI-powered image analysis and decision support systems 	<ul style="list-style-type: none"> - Enhances diagnostic accuracy. - Improves diagnosing efficiency. - Facilitates quicker decisions. 	<ul style="list-style-type: none"> - Over-reliance on AI risks reducing human expertise. - High setup costs. - Risk of bias in AI
Application of AI in Medical Technologies: A Systematic Review of Main Trends[11]	<ul style="list-style-type: none"> - AI - Machine Learning 	<ul style="list-style-type: none"> - Enhances diagnostic accuracy - Automates tasks - Personalizes treatments 	<ul style="list-style-type: none"> - High computational resources - Risk of algorithm bias - Data privacy
Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence[12]	<ul style="list-style-type: none"> - AI & Machine Learning - Multi-omics data integration with EHR 	<ul style="list-style-type: none"> - Personalized treatment - Improved diagnostic accuracy 	<ul style="list-style-type: none"> - Data privacy risks - High initial implementation costs
E-COMMERCE: A BIG APPROACH FOR BUSINESS[13]	<ul style="list-style-type: none"> - Cloud computing for scalability 	<ul style="list-style-type: none"> - Wider market reach - 24/7 business operations 	<ul style="list-style-type: none"> - Cybersecurity risks - Dependency on internet connectivity
Research on the Problems and Countermeasures of Development of Medicine E-commerce[14]	<ul style="list-style-type: none"> - Online prescription management systems 	<ul style="list-style-type: none"> - Increased accessibility to medicine - Convenience for patients 	<ul style="list-style-type: none"> - Regulatory challenges - Risk of counterfeit medicines
Exploring E-Commerce Product Experience Based on Fusion Sentiment Analysis Method[15]	<ul style="list-style-type: none"> - Sentiment analysis algorithms - Natural Language Processing (NLP) 	<ul style="list-style-type: none"> - Improved understanding of customer feedback - Enhanced product recommendations 	<ul style="list-style-type: none"> - Requires large data sets for accuracy - Computationally intensive

IV. DISCUSSION AND EVALUATION

A. Key Contributions of Existing Research

Existing research on e-commerce platforms for pharmaceutical procurement has provided valuable insights into secure transactions, inventory management, and compliance with medical regulations. Various studies emphasize the role of AI-driven recommendation systems, and authentication mechanisms in streamlining pharmaceutical supply chains. Research highlights that automated inventory tracking is critical for reducing procurement inefficiencies.

Studies on secure e-commerce frameworks suggest that integrating role-based access control, multi-factor authentication, and real-time stock updates can significantly enhance platform security and reliability.

Additionally, machine learning-based recommendation engines have shown promise in optimizing order patterns and predicting demand trends, improving bulk procurement efficiency for medical professionals.

Comparative Analysis with Existing Systems

A comparison between traditional procurement methods, generic e-commerce platforms, and MedEase highlights its unique advantages:

Feature	Traditional Procurement	Generic E-Commerce Platforms	MedEase Platform
Bulk Ordering Efficiency	Slow & Manual	Not Optimized for Bulk Orders	Streamlined Bulk Procurement
Product Recommendations	No Automation	Basic Filtering	AI-Driven Personalized Recommendations
Security & Authentication	Low	Moderate	High (Multi-Layer Security & Role-Based Access)
Payment Processing	Offline	Standard Payment Gateway	Secure, Multi-Option Payment Gateway

V. CONCLUSION

MedEase is a full, innovative web-based solution for healthcare professionals to purchase medications and medical supplies. Coupled with its easy-to-use platform, a comprehensive database, and features like real-time inventory tracking, prescription verification, and bulk ordering capabilities, the system streamlines the ordering process to save time and money. With the use of the AI model, it gives personalized recommendations and that optimizes the order choices for maximum efficiency. However, MedEase could face problems like interfacing with existing HER systems and establishing data security and privacy in a highly regulated industry. However, despite these potential challenges, MedEase has the potential to enhance the efficiency and accuracy of medical procurement and thus improve patient care. Future improvements, such as blockchain for enhanced security and transparency or predictive analytics for demand forecasting, would further ensure its position as a powerful platform in the ever-changing healthcare market. MedEase empowers medical professionals with timely access to supply for efficient procurement. Along with that, New developments will allow it to integrate with EHR systems and predictive analytics, further solidifying its place in the healthcare ecosystem.

REFERENCES

- [1] Zhaojian Cui, Zhenming Yuan, Yingfei Wu, Xiaoyan Sun and Kai Yu “Intelligent Recommendation for Departments Based on Medical Knowledge Graph” Volume 11, March 2023, ISSN: 2169-3536.
- [2] Muhammad Saad, Ashraf Zia, Mushtaq Raza, Mahwish Kundi and Muhammad Haleem “A Comprehensive Analysis of Healthcare Websites Usability Features, Testing Techniques, and Issues” Volume 10, July 2022, ISSN: 2169-3536.
- [3] César González Fernández, Isaac Martín De Diego, Alberto Fernández-Isabel and Juan Fernando Jiménez V “Detecting Low-Credibility Medical Websites Through Semi-Supervised Learning Techniques” Volume 11, December 2023, ISSN: 2169-3536.

- [4] Nitish Thorat, Yash Punna, Jay Narayane, Sourav Waje and Geeta Navale “*An E-commerce Medicine Website Deployed no AWS with Prescription Verification* ” International Conference on Artificial Intelligence and Machine Vision (AIMV), January 2022.
- [5] Pritam Bhuiya, Rohit Malik, Aritra Rana and Md. Ashifuddin Mondal “*Personalized Medicine Recommendation and Disease Flagging Model Based on User's Previous Orders*” September 2023.
- [6] Aprajita Kimta and Reena Dogra “*Artificial Intelligence in the Pharmaceutical Sector of India: Future Prospects and Challenges*” Himachal Pradesh University, January 2024.
- [7] Dushyant Goyal, Eera Gaur, Aurangzeb Hussain and Dr. Anjali Singhal “*Ezycart: Multivendor E-Commerce Website*” Volume 9, Issue VIII, August 2021.
- [8] Rasha Al-Mahrouqi, Khalsa Al Siyabi and Amani Al Nabhani “*E-commerce Web App in Azure Cloud: Considerations, Components of Implementation and Schematic Design*” Volume 14, Number 4, April 2021, ISSN 1913-8989.
- [9] Veer Patel and Manan Shah “*Artificial Intelligence and Machine Learning in the Pharmaceutical Industry*” Volume 8, Issue 2, September 2023.
- [10] Giuseppe Desolda, Giovanni Dimauro and Andrea Esposito “*A Human–AI Interaction Paradigm and its Application to Rhinocytology*” Volume 155, September 2024.
- [11] Olga VI Bitkina, Jaehyun Park and Hyun K. Kim “*A Human–AI Interaction Paradigm and its Application to Rhinocytology*” August 2024.
- [12] Li Tong, Wenqi Shi and Monica Isgut “*Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence*” volume 17, October 2023.
- [13] El Falah Zineb, Rafalia Najat and Abouchabak Jaafar “*E-COMMERCE A BIG APPROACH FOR BUSINESS* ” International Journal Of Transformation In Business Management , January 2022.
- [14] Lin Zhang and Wolfgang Wilhelm “*Research on the Problems and Countermeasures of Development of Medicine E-commerce*” DEStech Transactions on Social Science Education and Human Science, March 2018
- [15] Huaqian He, Guijun Zhou and Shuang Zhao “*Exploring E-Commerce Product Experience Based on Fusion Sentiment Analysis Method*” Volume 10, October 2022, ISSN: 2169-3536.