



## **Smart Cradle System: A Comprehensive Review of Technologies, Applications and Future Trends**

**Nistha Bhati<sup>1</sup>, Yukti Payak<sup>2</sup>, Shreya Raut<sup>3</sup>, Saniket Kudoo<sup>4</sup>**

<sup>1</sup>(Computer, Viva Institute of Technology/ Mumbai University, India)

<sup>2</sup>(Computer, Viva Institute of Technology/ Mumbai University, India)

<sup>3</sup>(Computer, Viva Institute of Technology/ Mumbai University, India)

<sup>4</sup>(Computer, Viva Institute of Technology/ Mumbai University, India)

**Abstract:** The Smart Baby Cradle System is an affordable IoT-based solution designed to assist families in monitoring their babies in real-time. It provides vital features like wetness detection, ambient temperature, and baby cry monitoring using sensors and Arduino UNO microcontroller. The cradle system automatically swings when the baby cries, and it includes components such as a Moisture sensor, Ultrasonic sensor, servo motor, toy, and fan. Caregivers can remotely monitor the cradle's conditions, including the baby's environment and cry levels, through an application. The system allows for controlling fan speed and adjusting other settings, ensuring a safe and comfortable environment for the baby. This prototype has been tested for cost-effectiveness, simplicity, and reliability, offering caregivers peace of mind and reducing the need for constant manual intervention.

**Keywords** – Automated Cradle, IoT, Sensors, Video Monitoring, Wireless Control

### **1. INTRODUCTION**

The Smart Cradle System aims to provide a cost-effective and innovative solution for parents who struggle to balance childcare with their professional lives. In today's busy world, it's challenging for parents to constantly monitor and soothe their babies, which often requires significant time and attention. Traditional methods, like hiring a caretaker, can be expensive, and manual monitoring is time-consuming. Leveraging IoT, the automated cradle offers features such as gentle swinging, temperature and humidity monitoring, and cry detection, all controlled via a mobile app. This system not only helps parents by reducing the need for constant supervision but also enhances the baby's comfort by eliminating noise and providing a smooth, automated rocking motion.

The Smart Cradle System is an innovative and intelligent solution designed to enhance baby care by automating key functions of a traditional cradle and integrating modern monitoring technologies. This system is equipped with various smart features, including automatic swinging, a rotating toy, a fan for comfort, wetness detection, and real-time monitoring of the baby via a camera. These features aim to provide a seamless and hands-free experience for caregivers, ensuring the baby's comfort, safety, and well-being, all while reducing the workload on parents. The cradle includes a motorized swinging system that gently rocks the baby to sleep. The swinging can be activated either manually or automatically when the system detects that the baby is awake or restless. Attached to the cradle is a rotating toy system that can capture the baby's attention. This rotating toy acts as both a source of entertainment and visual stimulation, keeping the baby engaged and preventing boredom. The motion of the toy is synchronized with the cradle's swinging, providing a cohesive, calming experience for the infant. The fan operates at a gentle speed, ensuring proper airflow without being too intense for the baby's delicate skin. This feature is particularly useful in warmer climates or during the summer months, keeping the baby cool and comfortable.

The system is equipped with a wetness sensor that detects when the baby's diaper is wet. Once moisture is detected, an alert is sent to the caregiver via a connected app or an indicator on the cradle, ensuring timely diaper changes. This feature helps prevent discomfort and skin irritation, promoting better hygiene and comfort for the baby. The smart cradle includes a camera that provides real-time video monitoring of the baby. Parents can view the live feed from their smartphones, enabling them to keep an eye on the baby even when they are not physically present in the room. The smart cradle system can be integrated with a mobile app that allows caregivers to control various features such as adjusting the swinging speed, rotating the toy, switching on the fan, and receiving notifications.

## 2. LITERATURE REVIEW

Ms. Sanjana Urs.D, Ms. Nethravathi K [1], The paper titled "IoT Based Smart Cradle System" introduces a smart cradle that automates infant care using sensors and a microcontroller-based solution. The system includes sensors to monitor parameters such as temperature, wetness, and sound. It automatically rocks the cradle, plays a mother's voice, or activates a fan based on the infant's conditions. Notifications are sent to parents via a WiFi interface for real-time monitoring. The system is designed to provide convenience for working parents, ensuring effective infant care without constant supervision. Future enhancements include integrating artificial intelligence for better understanding of the baby's expressions and activities.

Prathibha Kashid, Anish Gavali, Lokesh Patil, Rohit Nathe, Prasad Gadakh [2], The paper titled "Smart Cradle" discusses an IoT-based baby cradle system designed to enhance infant care. The system uses sensors and IoT technology to monitor a baby's status in real-time and automate cradle movements. Through a mobile application, caregivers can monitor and control the cradle remotely, ensuring safety and comfort for the infant. The system includes features such as automatic swinging when the baby cries, alerts when the baby needs attention, and real-time data collection on humidity and motion. This innovation aims to ease the burden on working parents, allowing them to manage infant care alongside other responsibilities.

Siddhi Kirtikumar Rasure, Mrunal Vijay Shedage, Manish Vitthal Bhoi, Mansi Kanitkar, Ramgopal Shahu [3], The paper titled "Smart Baby Cradle" introduces an innovative system designed to improve infant care using modern technology. The cradle is equipped with various sensors, including sound, moisture, and temperature sensors, along with a camera for real-time monitoring. When the baby cries or wakes up, the cradle automatically rocks via a motor mechanism, and notifications are sent to the parent's device using GSM technology. This system provides convenience for working parents by allowing remote monitoring through a smartphone, ensuring the baby's safety and comfort. It also has potential applications in hospitals and daycare centers, where multiple infants need constant attention.

T. Srilatha, N. L. Chaitra, Shaik Reehana, M. Shravani [4], The paper titled "Smart Cradle System Using IoT" discusses an innovative solution for infant care that integrates technology to assist working parents. The system utilizes an Arduino Uno microcontroller, along with sensors such as IR, moisture, and sound sensors, to monitor the baby's activities. It detects crying, wet diapers, and movement, sending alerts to parents via a smartphone app. Additionally, the cradle features automatic rocking, live camera monitoring, and a soothing music system. This IoT-based cradle provides convenience and peace of mind, allowing parents to manage their daily tasks while ensuring their baby's well-being.

Deepika, Asst Prof. Vishalakshi Patil [5], The paper titled "Enhanced Baby Monitoring: IoT-driven Smart Cradle System" presents an IoT-based smart cradle designed to help parents monitor and care for infants. The system integrates various sensors, including motion, temperature, and humidity sensors, to detect the baby's movements and ensure optimal environmental conditions. The cradle can autonomously rock in response to the baby's cries, and alerts are sent to caregivers via a mobile application. The system also provides real-time video and audio streaming, allowing parents to remotely monitor their baby. The core of the system uses an Arduino microcontroller and an ESP8266 WiFi shield for data processing and communication. The goal is to offer a safe, efficient, and convenient solution for infant care, enhancing parental support while ensuring the baby's well-being.

Mahesh Kaluti, Kavana D, Nirbhay S URS, Sahana H, Harshitha K [6], The paper "Smart Monitoring System for Baby" presents an IoT-based smart cradle designed to assist parents in monitoring their infants in real-time. The system includes sensors to detect sound, humidity, temperature, and the baby's emotional state. When the baby cries, the cradle swings automatically, and room temperature adjustments are made if necessary. Data is processed using Raspberry Pi and stored in the cloud, providing remote access for parents through a mobile app. This system aims to alleviate the challenges faced by busy parents, offering efficient and autonomous baby care solutions.

Bodla Sanjana, Yerru Pranavnath Reddy, Yangala Smruthi [7], The paper "Smart Cradle" presents the design and implementation of an automated baby cradle aimed at assisting busy parents and caregivers in monitoring infants. The smart cradle uses a sound sensor to detect when the baby cries, triggering a servo motor to swing the cradle, playing a lullaby, and activating a toy to calm the baby. Additionally, a rain sensor detects if the mattress is wet, prompting an alarm to ensure the baby's hygiene. The system is controlled using an Arduino microcontroller, and it aims to provide a safe, efficient, and cost-effective solution for parents, allowing them to balance their work and caregiving responsibilities more effectively.

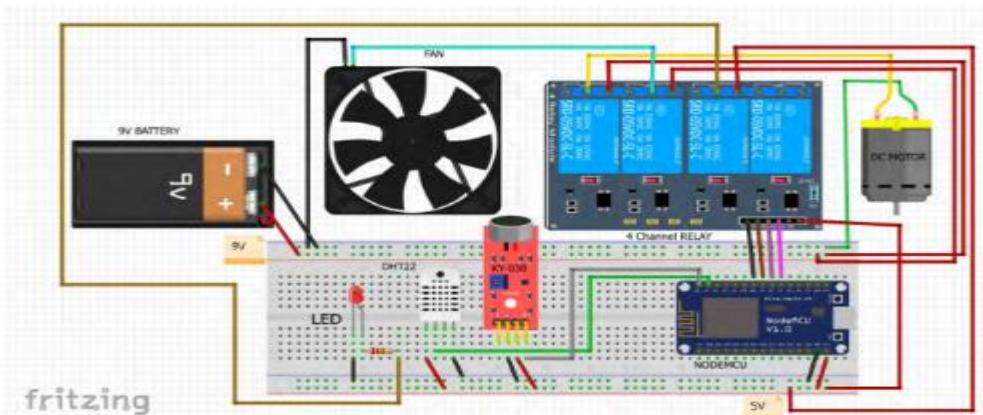
Atul V. Karanjkar, Rajeshwar Kumawat [8], The paper "Design of a Smart Baby Cradle Using Blynk and Local Customer Priorities" presents an IoT-based automated baby cradle system aimed at simplifying baby care for busy parents. The system uses sensors to monitor the baby's cry, mattress wetness, and body temperature, providing remote monitoring via the Blynk mobile app. The cradle features an automatic swinging mechanism that activates upon detecting the baby's cry, offering comfort and reducing the need for constant parental presence. The use of a microcontroller, sound sensor, temperature sensor, and moisture sensor ensures that parents receive timely notifications about the baby's condition, thereby balancing their work and caregiving responsibilities effectively.

Sangita Kurundkar, Pulkit, Seema Pawar, Aditi Patil, Prathamesh Jamadar, Nishad Ranade [9], The paper titled "Smart Cradle System" presents a solution for modern parents who struggle to constantly care for their infants due to busy schedules. The proposed smart cradle is an IoT-enabled system that automates monitoring and provides alerts for various conditions, such as crying or wet diapers, through a mobile application. The cradle features components like temperature and moisture sensors, sound detection, and servo motors to automatically swing the cradle when necessary. This cost-effective system aims to enhance infant care while giving parents some relief from continuous monitoring, providing comfort to both parents and babies.

Ms. K. Shirisha, Abhinay Durgam, Nishanth Adidela [10], The paper titled "Smart Baby Cradle System using IoT" presents a solution to assist working parents in monitoring their infants. The proposed system uses an IoT-based smart cradle equipped with sensors to monitor the baby's condition, such as wetness detection, ambient temperature, and crying. It also includes automatic cradle swinging, a fan for temperature regulation, and a speaker for playing lullabies. The system, which utilizes an Arduino Uno microcontroller and the Blynk app, enables parents to control and monitor their baby's condition in real time from anywhere. The system aims to provide a cost-effective, user-friendly solution for modern childcare needs.

Kaushalya Thopate, Mayuri Gawade, Vaishali Savale, Abhijeet Cholke, Prajakta Musale [11], The paper titled "Smart Cradle: A Technology-Enabled Solution for Safer and Better Infant Sleep" explores the development of a smart cradle designed to enhance infant sleep quality and safety. This cradle incorporates various technologies to monitor and improve the sleeping environment for babies. It includes features like motion detection, temperature regulation, and sound systems to soothe the infant, all aimed at reducing the risk of Sudden Infant Death Syndrome (SIDS) and ensuring a comfortable sleep experience. The paper also discusses the design, implementation, and potential benefits of using technology in infant care.

Nanthakumar Ganasan, Nurfarina Zainal [12], The paper titled "IoT-based Smart Baby Swing with an Android Mobile Application" discusses the development of an Internet of Things (IoT) system to address issues such as milk choking and Sudden Infant Death Syndrome (SIDS) in infants. The smart baby swing uses components like the ESP8266 NodeMCU microcontroller, a sound sensor, and an ESP32 camera for real-time monitoring via an Android mobile application. The system enables parents or caregivers to control the swing speed and delay modes, receive alerts if the baby cries, and monitor the baby through live video. The solution aims to enhance baby safety and reduce the need for constant supervision.


Ms. Diya Karkhanis, Mr. Yogesh Kendre, Ms. Siddhi Hande, Mr. Sagar Dhawale [13], The paper "A Review Paper on Smart Cradle System" focuses on the design and implementation of an IoT-based cradle system to help parents monitor their infants remotely. The smart cradle integrates sensors to detect crying, wet diapers, methane emissions from dirty diapers, and body temperature. It uses cloud services to store data and provide real-time alerts to parents via a mobile application. The system also automatically swings the cradle when it detects the baby crying. This solution aims to make infant care easier, particularly for working mothers, by reducing the need for constant supervision and improving hygiene and safety.

P Vanajakshi, Sasikumar. B, Spoorthi B R [14], The paper titled "Mamatheya Thottilu: Real-Time Baby Cradle with Smart Assistance Using IoT" presents the development of a smart baby cradle system that uses the Internet of Things (IoT) to monitor and care for infants. The system is designed to assist working parents, especially mothers, who find it difficult to monitor their babies continuously. Key features of the cradle include sensors that track essential infant parameters like temperature, heart rate, gas detection, and motion. The system responds to the baby's cries by swinging the cradle automatically and providing real-time updates via a mobile application. By integrating a Raspberry Pi with multiple sensors, the cradle offers a safe, incubator-like environment, ensuring parents are constantly aware of their baby's condition. This approach aims to enhance infant care efficiency and provide peace of mind to parents through automated monitoring and control.

Ibrar Ahmad, Syed Jabir Hussain, Safeer Ullah, Waqas Ali Shah, Hamid Ali, Umar Waqar and Shah Fahad [15], The paper titled "IoT-based Smart Infant Baby Cradle Using IR IP-Camera" discusses a smart baby cradle system that integrates various IoT components to ensure continuous monitoring and care for infants, especially when parents or caregivers are unavailable. The cradle features an IR IP camera for real-time video monitoring, even at night, and uses sensors to detect a baby's cry, monitor temperature, check for wetness, and sense the presence of mosquitoes. The system can automatically swing the cradle, play soothing music, and control environmental conditions like temperature and air quality. Alerts and updates are sent to caregivers via Bluetooth and GSM modules, with data stored for a month for review. This system enhances infant care by automating responses to a baby's needs while ensuring safety and comfort.

The IoT-based smart cradle systems discussed across the papers offer advanced infant care solutions but face certain limitations. Most systems rely heavily on internet connectivity, which can be problematic in areas with poor network coverage. The automatic cradle swinging mechanism might not suit all babies, as constant motion could disturb their natural sleep patterns. Additionally, sensor accuracy may vary, leading to false alerts or missed events, causing frustration for parents. Many systems are complex to set up, requiring technical knowledge, and their reliance on cloud storage raises privacy concerns. Some solutions are also expensive, limiting accessibility for all users. Lastly, these systems could create over-reliance on technology, potentially reducing hands-on parental care.

### 3. REFERRED SYSTEM COMPONENT DIAGRAM



3.1 Component Circuit Diagram

This diagram represents an electronic circuit setup involving a NodeMCU microcontroller, various sensors, and output devices. The NodeMCU is connected to a DHT22 sensor for temperature and humidity monitoring and a KY-038 sound sensor for sound detection. A 4-channel relay module is used to control external devices such as a fan and a DC motor, powered by a 9V battery. The setup also includes an LED as an indicator and a fan for cooling, demonstrating automation possibilities. The connections emphasize the use of both 5V and 9V power lines to operate various components in the system.

#### 4. FUTURE TRENDS

Future trends in smart cradle systems are likely to focus on enhanced automation and intelligence through AI and machine learning. AI-driven systems will be able to analyze a baby's behavioral patterns, recognizing needs more accurately and adjusting responses accordingly. Integration with smart home systems, such as voice assistants and environmental controls, will allow seamless management of the baby's surroundings. Advanced biometric sensors could monitor vital signs, such as heart rate, breathing patterns, and oxygen levels, providing real-time health insights. Enhanced connectivity, including 5G, will improve the reliability of remote monitoring. Augmented reality (AR) interfaces may allow parents to visualize baby data more interactively. Energy-efficient designs and eco-friendly materials will become a priority, and advancements in cybersecurity will address data privacy concerns. Moreover, cost-effective solutions could make smart cradle systems more accessible, expanding their use in hospitals and childcare centers.

#### 5. CONCLUSION

YumeNest represents a significant step toward modernizing infant care through technology. Its innovative features address common challenges faced by working parents, providing real-time monitoring, automation, and enhanced safety. While there are areas for improvement, the project's success in creating a functional prototype demonstrates its potential to transform childcare practices. By incorporating advanced technologies and addressing current limitations, future iterations of YumeNest could further enhance its impact on parental convenience and infant well-being.

#### ACKNOWLEDGEMENTS

We shall be failing in our duty, if we will not express our sincere gratitude to all those distinguished personalities with the help of whom we have successfully completed our project. My deep gratitude to Dr. Arun kumar, PRINCIPAL, VIVA INSTITUTE OF TECHNOLOGY, who always been playing a great role in all round development of the student. My deep gratitude to Prof. Sunita Naik, The Head of Computer Department and also our project guide Prof. Saniket Kudoo and our project coordinator Prof. Kirtida Naik for her valuable guidance, advice and constant aspiration to our work, teaching and non-teaching staff for their kind support, help and assistance, which they extended as and when required. Last but not the least we wish to thank my friends for providing technical and moral support. We hope that this project report would meet the high standards of all concerned people and for their continuous co-operation during the whole period of project that helped us in enhancement of this project.

#### REFERENCES

- [1] Ms.Sanjana, Urs.D, Ms.Nethravathi, K G, Dept of CSE,KSSEM, Assistant professor Dept of CSE, KSSEM. “IOT Based Smart Cradle System” International Journal of Engineering and Techniques - Volume 10 Issue 3, May 2024
- [2] P. Kashid, A. Gavali, L. Patil, R. Nathe, P. Gadakh, “Smart Cradle”, IJIRMP, Volume 11(Nov-Dec 2023).

<https://www.ijirm.org/research-paper.php?id=230348>

- [3] S. K. Rasure, M. V. Shedage, M. V. Bhoi, M. Kanitkar, R. Shahu, “Smart Baby Cradle”, International Journal of Research in Engineering, Science and Management Volume 6, Issue 11, November 2023.  
<https://journal.ijresm.com/index.php/ijresm/article/view/2854/2855>
- [4] T. Srilatha, N. L. Chaitra, S. Reehana, M. Shravani, “Smart Cradle System Using IoT”, IJNRD, Volume 8, June 2023. <https://www.ijnrd.org/papers/IJNRD2306070.pdf>
- [5] Deepika, Asst.Prof. Vishalakshi Patil, “Enhanced Baby Monitoring: IoT-driven Smart Cradle System”, International Research Journal of Engineering and Technology (IRJET), Volume 10, Aug 2023.  
<https://www.irjet.net/archives/V10/I8/IRJET-V10I849.pdf>
- [6] M. Kaluti, Kavana D, N. S. URS, Sahana H, Harshitha K, “Smart Monitoring System For Baby”, July 2023.  
[https://www.researchgate.net/publication/372288049\\_Smart\\_Monitoring\\_System\\_For\\_Baby](https://www.researchgate.net/publication/372288049_Smart_Monitoring_System_For_Baby)
- [7] B. Sanjana, Y. P. Reddy, Y. Smruthi “SMART CRADLE” International Research Journal of Modernization in Engineering Technology and Science Volume:04/Issue:06/June-2022.
- [8] A. V. Karanjkar, R. Kumawat, “Design of a Smart Baby Cradle Using Blynk and Local Customer Priorities”, SAMRIDDHI Volume 14, Issue 2, 2022.
- [9] S. Kurundkar, Pulkit, S. Pawar, Aditi Patil, Prathamesh Jamadar, Nishad Ranade, “Smart Cradle System”, Vishwakarma Institute of Technology, Pune, India.
- [10] Ms. K. Shirisha, Abhinay Durgam, Nishanth Adidela, “Smart Baby Cradle System using IoT”, International Journal of Research Publication and Reviews.
- [11] K. Thopate, M. Gawade, V. Savale, A. Cholke, P. Musale, “SmartCradle: A Technology-Enabled Solution for Safer and Better Infant Sleep”, International Journal on Recent and Innovation Trends in Computing and CommunicationISSN: 2321-8169 Volume: 11 Issue: 7
- [12] N. Ganasan, N. Zainal, “IoT-based Smart Baby Swing with an Android Mobile Application”.
- [13] Ms. Diya Karkhanis, Mr. Yogesh Kendre, Ms. Siddhi Hande, Mr. Sagar Dhawale, “A Review Paper on “Smart Cradle System”
- [14] P Vanajakshi, Sasikumar. B, Spoorthi B R, “Real Time Baby Cradle with Smart Assistance using IoT”, International Journal of Engineering Research & Technology (IJERT) Published by 2278-0181 Vol. 12 Issue 03, March-2023
- [15] I. Ahmad, S. J. Hussain, S. Ullah, W. A. Shah, Hamid Ali, Umar Waqar and Shah Fahad, “IoT-based smart infant baby cradle using IR IP-camera” World Journal of Advanced Research and Reviews, 2022.