

PLC Automation System for Production Line

Deepak M. Sajnekar, Viraj P. Parsekar, Rahul R. Gavali, Hariom S. Nishad,

¹(Associate Prof. in Electrical Engineering, VIVA Institute of Technology, India)

²(Electrical Engineering, VIVA Institute of Technology, India)

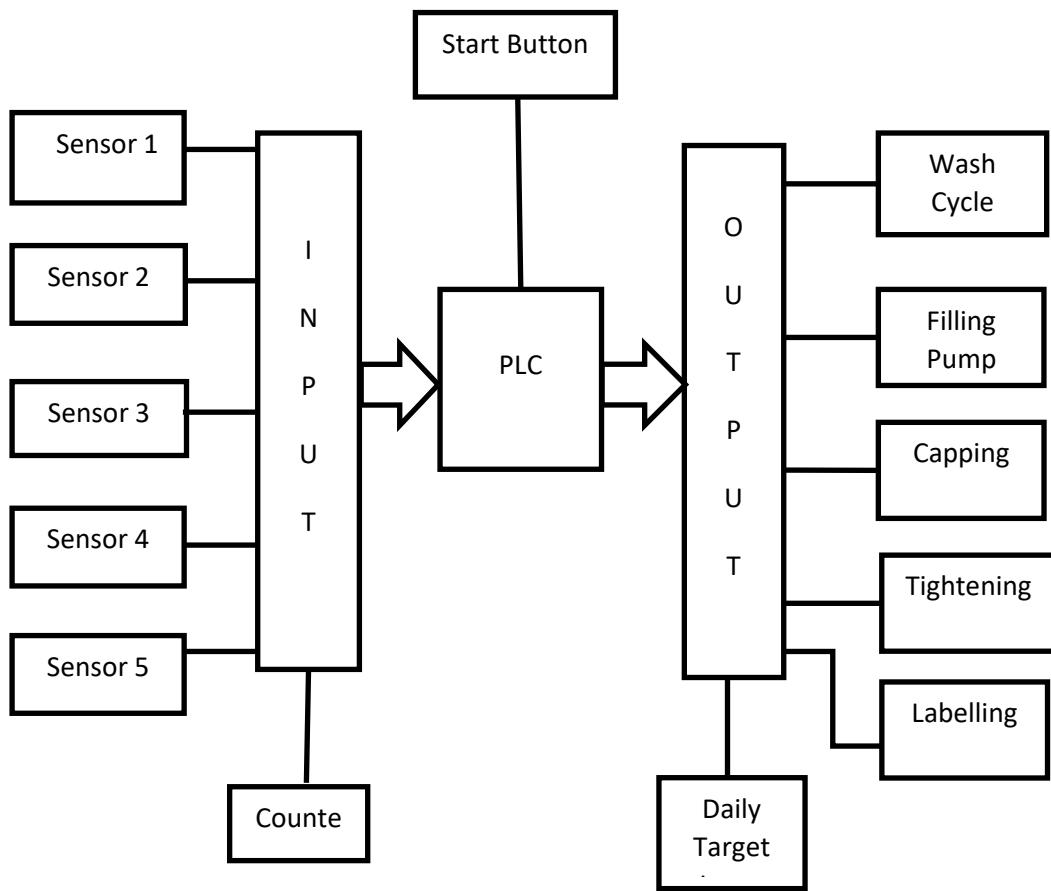
³(Electrical Engineering, VIVA Institute of Technology, India)

⁴(Electrical Engineering, VIVA Institute of Technology, India)

Abstract : This research paper details the design and implementation of an automated production line using Programmable Logic Controllers (PLCs). The developed system is capable of handling three distinct products, ensuring efficiency and adaptability in production processes. The project integrates PLC programming, robotic assistance, and environmental management, utilizing OpenPLC software for simulation and testing. Key components include sensors, actuators, and control relays to automate stages like filling, capping, sealing, and packaging within a sterile environment. The automation reduces manual intervention, minimizes downtime, and enhances precision, making it ideal for industries aiming to optimize productivity and quality. Future scope includes integration with IoT, AI, and advanced robotics to further improve efficiency and sustainability.

Keywords - PLC, Automation, OpenPLC, IoT, Robotics

I. INTRODUCTION


The manufacturing industry demands efficient and flexible automation systems to meet dynamic market needs. This paper introduces an automated production line using OpenPLC, simulating processes for multiple products. The primary aim is to design a system with minimal downtime during product switches while ensuring precision and adherence to quality standards. The project incorporates HVAC control, robotic assistance, and advanced sensors to manage processes like filling, capping, and labeling. These innovations underline the significance of PLC-based automation in modern industrial practices.

II. METHODOLOGY

The proposed system employs OpenPLC software and integrates sensors, actuators, and conveyors for seamless automation. Ladder logic programming forms the foundation, enabling precise control of each production stage. The methodology includes:

1. Initialization: System start-up and HVAC activation to ensure a controlled environment.
2. Product Handling: Robotic arms load products onto the conveyor for filling and sealing.
3. Process Automation: Sensors and actuators manage sequential operations for product processing.
4. Monitoring and Control: Timers and counters ensure real-time adjustments and system efficiency.

III. FIGURES AND TABLES

Fig.1. Block Diagram Of PLC System

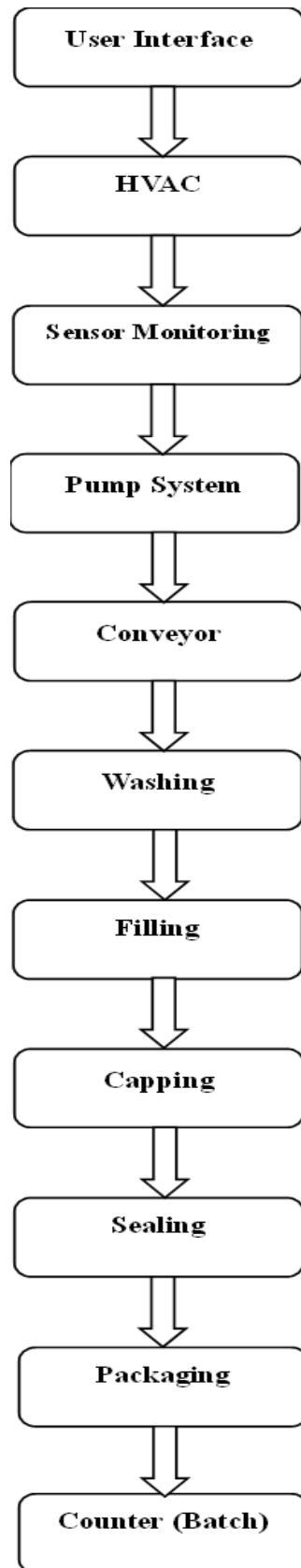


Fig.2. Flow Chart Of PLC System

IV. CONCLUSION

The system demonstrated improved efficiency, reducing manual errors and ensuring consistent product quality. Simulations showed optimized resource utilization and significant reductions in production time. The flexibility to switch between products without reconfiguration highlights the scalability of the design.

Acknowledgements

The authors express gratitude to Dr. Deepak M. Sajnekar and the Electrical Engineering Department of VIVA Institute of Technology for their guidance and support in completing this project.

REFERENCES

Proceedings Papers:

1. Guoping Wang, "A New Approach for PLC Ladder Diagram Design," IEEE, 2021.
2. G.A. Gericke et al., "Design of Digital Twins for Optimization of a Water Bottling Plant," IEEE, 2019.
3. Eka Iskandar et al., "Ladder Diagram Design Based On Change Signal Method For Crude Palm Oil Process," IEEE, 2019.
4. ZHANG Tianxia et al., "Application of PLC for Arranging Bottle in Beer Filling Production Line," IEEE, 2012.
5. Olivier De Smet et al., "Verification of a Controller for a Flexible Manufacturing Line Written in Ladder Diagram via Model-Checking," IEEE, 2002.