

Grain Weevil Robot

Shivam Yadav¹, Rahul Abhayankar², Siddhant Parulekar³, Kartik Urumkar⁴

(Department Of Electrical Engineering, VIVA Institute of Technology, Virar, India)¹

(Department Of Electrical Engineering, VIVA Institute of Technology, Virar, India)²

(Department Of Electrical Engineering, VIVA Institute of Technology, Virar, India)³

(Department Of Electrical Engineering, VIVA Institute of Technology, Virar, India)⁴

Abstract: Initial field tests have demonstrated the robot's capability to identify areas at risk of grain loss, thereby assisting farmers in taking timely action to protect their investments. Grain management requires a person to go into the storage tank and manage the grain in it. This is a potential risk to human life as the person handling the grain might drown in grain. To minimize this risk this robot is designed in a way that a person does not need to physically go inside the silo. By integrating advanced technology into grain management, this innovative solution not only enhances operational efficiency but also supports sustainable practices by reducing waste and improving overall grain preservation. Future developments will focus on enhancing the robot's navigation systems and expanding its monitoring capabilities to further support farmers in various storage environments. A Wi-Fi-controlled robotic system designed for effective grain management in silos.

Keywords – Grain weevil, Battery, Robot, Motor driver, Wifi Controlled.

I. INTRODUCTION

In modern agriculture, ensuring the safety and efficiency of grain storage is paramount. The Grain Weevil robot emerges as a revolutionary solution designed to tackle the challenges associated with managing grain bins—traditionally dangerous and labor-intensive environments. By keeping farmers out of these confined spaces, the Grain Weevil minimizes risks associated with grain bin hazards, allowing for safer operations. This advanced robot is equipped with capabilities that streamline grain management processes. The Grain Weevil not only levels grain but also breaks up crusts, ensuring that grain flows smoothly into augers. Its sophisticated design allows it to engage directly with the grain surface, promoting optimal storage conditions and preventing spoilage. Moreover, the Grain Weevil boasts advanced localization technology that enables it to navigate the grain bin effectively [8]. It accurately determines its position and can assess the angles and slopes of the grain inside, ensuring that it operates efficiently and effectively. This capability allows for precise management of grain levels, reducing waste and improving overall grain quality. By integrating the Grain Weevil into storage facilities, farmers can significantly enhance grain management efficiency, reduce labor costs, and ensure the highest quality of stored grain. As the agricultural sector continues to evolve, the Grain Weevil stands out as a critical innovation that prioritizes safety and productivity in grain management. The technology behind the Grain Weevil also contributes to better grain quality. With its precise navigation capabilities, the robot can assess and respond to the condition of the grain, ensuring optimal storage conditions. This proactive approach helps to minimize spoilage, reduce waste, and maintain the integrity of the grain, ultimately leading to higher quality outputs for farmers. In addition to safety, the Grain Weevil excels in improving operational efficiency. Its functions—leveling grain, breaking up crusts, and facilitating the flow of grain into augers—significantly reduce the time and labor required for these tasks. By automating these processes, the robot allows farmers to allocate their labor resources more effectively.

II. METHODOLOGY

The grain weevil robot for silos management

It is designed to optimize grain storage conditions by focusing on several critical functions: breaking clumps, managing pest populations, facilitating cleanliness, enhancing space management, and ensuring smooth grain flow. To begin with, the robot employs specialized mechanical arms and tools to break apart clumps of grain that may form during storage. These clumps can create stagnant areas where moisture accumulates, leading to conditions favourable for weevil infestations. By disrupting these clumps, the robot promotes better airflow and moisture distribution within the silo, which is essential for maintaining grain quality and reducing pest habitats. In addition to breaking clumps, the robot actively manages pest populations by integrating advanced detection and intervention strategies. Equipped with sensors and cameras, it continuously scans for signs of grain weevils and other pests. Upon identifying an infestation, the robot can initiate targeted pest control measures, such as localized treatments or the introduction of biological controls, thereby minimizing the reliance on broad-spectrum pesticides. This proactive approach not only protects the stored grain but also fosters a healthier storage environment, reducing the overall pest population over time. Furthermore, cleanliness is a key focus of the robot's design. It is capable of removing debris and organic material that can attract pests or compromise grain quality. By maintaining a clean storage environment, the robot helps mitigate the risks associated with pest infestations and spoilage, ensuring that the grain remains in optimal condition. In terms of space management, the robot operates efficiently within the silo's confines, navigating tight spaces and adjusting its operations according to the varying grain levels. This flexibility allows it to cover the entire storage area without causing disruption or damage to the grain. Lastly, the robot facilitates smooth grain flow by preventing blockages that can occur due to clumping or pest-related damage. Its continuous monitoring and intervention help maintain a consistent flow of grain, which is crucial for both the handling processes and for maintaining the integrity of the stored product. By addressing these key areas—clump breaking, pest management, cleanliness, space optimization, and grain flow—the grain weevil robot plays a vital role in enhancing the efficiency and effectiveness of silo operation.

III. FIGURES AND TABLES

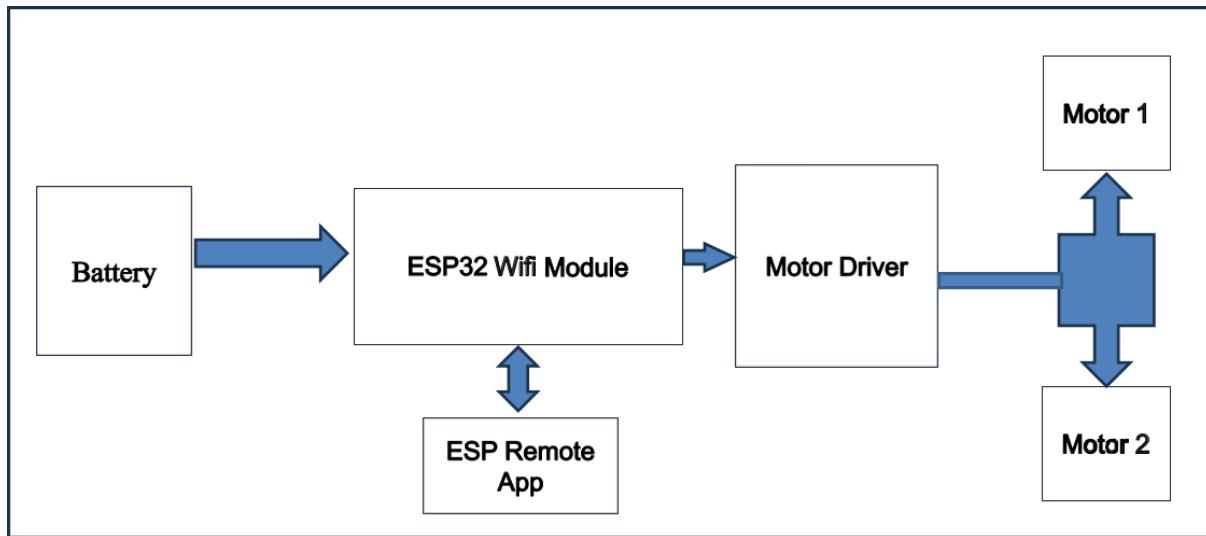


Fig 1 Block Diagram of Grain Weevil Robot

IV. CONCLUSION

The Grain Weevil Robot project effectively tackles the difficulties encountered in large grain containers, specifically in terms of leveling the grain and lowering the amount of labor needed for such operations. In addition to saving a significant amount of time, the robot's automation of the leveling process guarantees more even and constant grain distribution, which is essential for maintaining the grain's quality. Additionally, by reducing workers' exposure to potentially dangerous working circumstances in grain storage areas, the robot's design helps to ensure worker safety.

The research has shown how robotics may increase productivity and safety in agricultural settings, and its success may open the door for more advancements in industrial and agricultural process automation.

V. Acknowledgements

We shall be failing in our duty, if we will not express our sincere gratitude to all those distinguished personalities with the help of whom we have successfully completed our project. My deep gratitude to **Dr. Arun Kumar**, Principal, Viva Institute of Technology, who always been playing a great role in all round development of the student. My deep gratitude to **Prof. Bhushan Save**, The Head of Electrical Department and also our project guide **Prof. Rahul Abhayankar** and our project coordinator **Prof. Rahul Abhyankar** for their valuable guidance, advice and constant aspiration to our work, teaching and non-teaching staff for their kind support, help and assistance, which they extended as and when required.

Last but not the least we wish to thank my friends for providing technical and moral support. We hope that this project report would meet the high standards of all concerned people and for their continuous co-operation during the whole period of period of project that helped us in enhancement of this project.

REFERENCES

- [1] C. Zhang, J. Su, W. Zhang and J. Zhou, "Design of Crawler Mobile Car with Infrared Remote Control" 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 2020, pp. 430-434, doi: 9108034
- [2] Debajyoti Mukhopadhyay, Ankita Meshram, Sushmita Karmakar, Amita Jadhav, "A Prototype of IoT based Remote Controlled Car for Pentesting Wireless Networks" in 2019 Global Conference for Advancement in Technology (GCAT) Bangalore, India. Oct 18-20, 2019

- [3] S. Thangavel, Deepika Sharma, Sharad D. Sawant “Grain quality detection by using image processing for public distribution” in International Conference on Intelligent Computing and Control Systems ICICCS 2017
- [4] Dr. A. Gopal, A. Anne Frank Joe Department of Electronics and Instrumentation “Identification of spectral regions of the key components in the near infrared spectrum of wheat grain” 2017 International Conference on circuits Power and Computing Technologies [ICCPCT]
- [5] Nazirah Ahmad Zaini, Norliza Zaini, Mohd Fuad Abdul Latip, Nabilah Hamzah “Remote Monitoring System based on a Wi-Fi Controlled Car Using Raspberry Pi” 2016 IEEE Conference on Systems, Process and Control (ICSPC 2016), 16–18 December 2016, Melaka, Malaysia.
- [6] Neha S. Naik1, Virendra. V. Shete2, Shruti. R. Danve3, “Precision Agriculture Robot for Seeding Function” 2015
- [7] Halil Durmuş, Ece Olcay Güneş, Mürvet Kirci, Burak Berk Üstündağ “The Design of General Purpose Autonomous Agricultural Mobile-Robot: “AGROBOT” Istanbul Technical University 2015.
- [8] Ling Sun, Zesheng Zhu “Spatial model for management in bin stored grain” 2013 International conference on digital manufacturing and automation.
- [9] S Mohan, E. Praveen kumar, B.Paulchamy, “Certain Investigation Of Precision Agriculture Robot Using Lab View” International Conference on Current Trends in Engineering and Technology, ICCTET’2013
- [10] Wang Shaokun , Xiao Xiao , Zhao Hongwei ,”The Wireless Remote Control Car System Based On ARM9” 2011 International Conference on Instrumentation, Measurement, Computer, Communication and Control.

- [11] Yaling Lu, Shihong Qin “Stored-grain Insect Image Processing Based On AHidden Markov Model” 2010 International Conference on Electrical and Control Engineering.
- [12] Hua Wang Xiaodiao Huang Rongjin Hong Chenggang Fang “A New Inspection Robot System for Storage Tank” Proceedings of the 7th World Congress on Intelligent Control and Automation June 25 - 27, 2008, Chongqing, China
- [13] Kenichi Aoto, Masahiro Inoue, Tomoyuki Nagshio and Takashi Kida “Nonlinear Control Experiment of RC Car using Internet” Proceedings of the 2005 IEEE Conference on Control Applications Toronto, Canada, August 28-31, 2005.
- [14] M. Adaikkappan and N. Sathiyamoorthy, “Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review,” Int. J. Energy Res., vol. 46, no. 3, pp. 2141–2165, Mar. 2002.