

A review on Liquid Solar Energy: A Novel Approach to Renewable Energy Storage and Distribution

Anojkumar Yadav¹, Tejas Sankpal², Amitkumar Vishwakarma³, Reema Gupta⁴
^{1,2,3,4} (Electrical Engineering Department, VIVA Institute of Technology, India)

Abstract : The global transition to renewable energy has been hindered by challenges in energy storage and transportation. Liquid solar energy, a transformative concept involving the conversion of solar energy into green methanol, offers a potential solution. This paper reviews the literature, explores methodologies, details the working principles, and discusses the advantages and future scope of liquid solar energy. By focusing on the feasibility and implications of this technology, the paper provides insights into its potential to address energy sustainability challenges.

Keywords - Carbon Neutrality, Direct Air Capture (DAC), Green Methanol, Liquid Solar Energy, Renewable Energy Storage.

I. INTRODUCTION

The growing demand for sustainable energy solutions necessitates advancements in energy storage and transportation. Renewable sources such as solar and wind, while abundant, are intermittent and require innovative storage mechanisms. Liquid solar energy, which involves the production of methanol using solar power and atmospheric CO₂, addresses these challenges. This approach offers a carbon-neutral alternative to conventional fuels, leveraging renewable energy to produce a storable and transportable liquid fuel.

II. LITERATURE SURVEY

2.1 Renewable Energy Storage Challenges Renewable energy systems face significant storage challenges due to the intermittent nature of resources such as solar and wind (Singh et al., 2020). Current storage technologies, including lithium-ion batteries, have limitations related to scalability, cost, and environmental impact (Wang et al., 2018). These constraints highlight the need for alternative storage solutions.

2.2 Methanol as an Energy Carrier Methanol has gained attention as a sustainable energy carrier due to its liquid state at ambient conditions and its versatility in energy systems. It can serve as a hydrogen carrier, a transportation fuel, and a chemical feedstock (Zhang et al., 2019). Studies demonstrate its lower carbon footprint compared to conventional fuels and compatibility with existing infrastructure (Chen et al., 2021).

2.3 Advances in Direct Air Capture Technology Direct air capture (DAC) is a promising technology for mitigating climate change by extracting CO₂ directly from the atmosphere (Keith et al., 2018). Innovations in DAC systems have improved efficiency and scalability, making it a viable component of carbon-neutral fuel production.

2.4 Liquid Solar Energy Research into liquid solar energy has focused on the integration of DAC with solar-powered hydrogen production to synthesize methanol (Patel & Singh, 2020). This approach offers a pathway to produce renewable fuels while addressing atmospheric CO₂ levels. Studies emphasize the potential of Giga plants—large-scale production facilities—to meet global energy demands.

III. METHODOLOGY

3.1 Water Extraction: Water is extracted from the atmosphere using dehumidification technologies. This ensures a sustainable and independent water source for hydrogen production. A dehumidifier extracts water from humid air by leveraging the process of condensation. Humid air is drawn into the system and passed over a cold evaporator coil, where water vapor condenses into liquid droplets as the air cools below its dew point. The collected water flows into a reservoir, while the now-dry air is reheated by a condenser coil and released back into the environment. Powered by a compressor-driven refrigeration cycle, this system is highly efficient for extracting atmospheric water, making it a sustainable solution for hydrogen production in renewable energy applications.

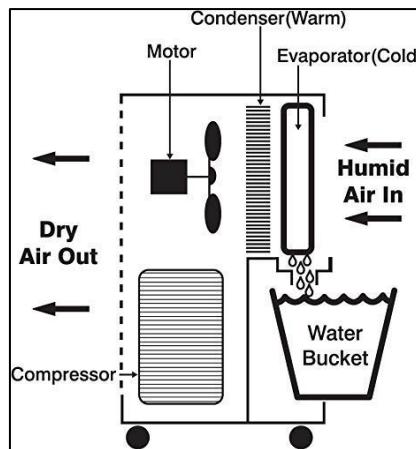


Fig. 1 Water Extraction

3.2 Hydrogen Production: Hydrogen is produced through the electrolysis of water, powered by photovoltaic solar energy. The reaction is as follows: Electrolysis is the process of splitting water (H_2O) into hydrogen (H_2) and oxygen (O_2) using electrical energy. It involves two electrodes—typically graphite—immersed in water with an electrolyte (such as $NaOH$ or H_2SO_4) to enhance conductivity. At the anode, water undergoes oxidation, releasing oxygen gas and hydrogen ions. At the cathode, water is reduced, producing hydrogen gas and hydroxide ions.

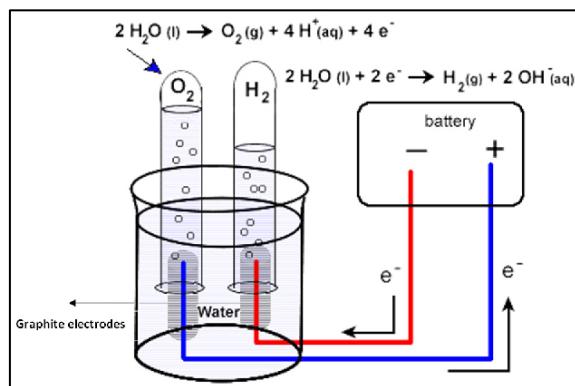


Fig. 2 Hydrogen Production

3.3 Carbon Dioxide Capture: DAC systems capture atmospheric CO_2 using a chemical absorption-desorption process. The captured CO_2 is purified and utilized in the synthesis of methanol.

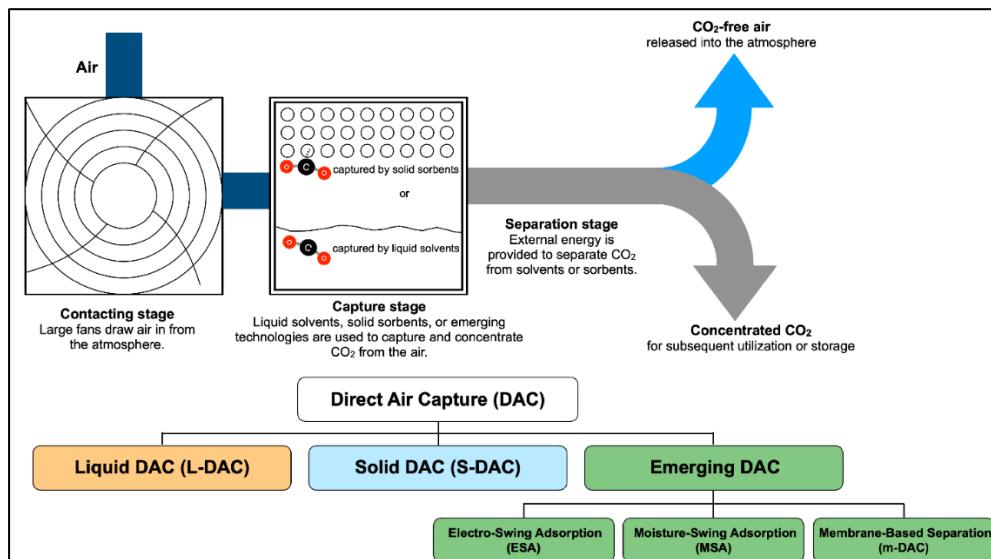


Fig. 3 Carbon Dioxide Capture

3.4 Methanol Synthesis Hydrogen and carbon dioxide react catalytically to produce methanol, following this reaction:

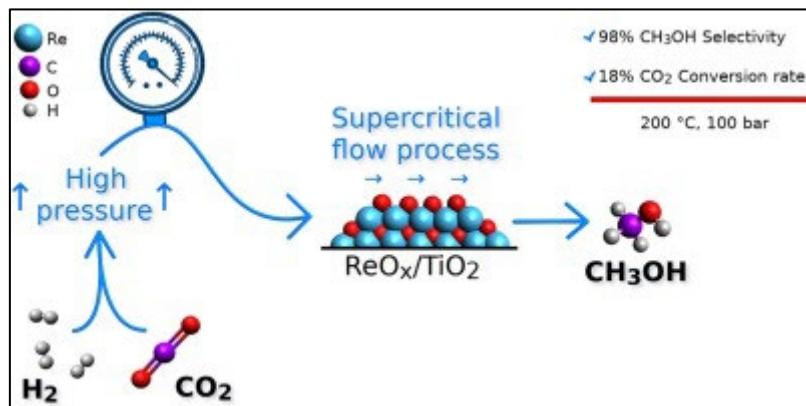


Fig. 4 Methanol Synthesis Hydrogen and carbon dioxide react catalytically

This reaction occurs under conditions of $200\text{-}300\text{ }^\circ\text{C}$ and 50-100 atm pressure, optimized for efficiency and yield.

IV. WORKING DETAILS

4.1 Solar Energy Utilization Photovoltaic cells harness solar energy, providing the electricity required for electrolysis and DAC systems. Concentrated solar power may also be employed to enhance energy capture.

4.2 Storage and Transportation Methanol, being a liquid at standard conditions, is easily stored and transported using existing infrastructure. It is compatible with fuel tanks, pipelines, and tanker networks.

4.3 End-Use Applications Green methanol has diverse applications, including:

- Fuel for internal combustion engines.
- Feedstock for the chemical industry.
- Energy source for maritime and aviation sectors.
- Hydrogen carrier for fuel cells.

V. ADVANTAGES

5.1 Environmental Benefits

- Carbon Neutrality: The process captures and utilizes atmospheric CO_2 , creating a closed carbon cycle.
- Reduction of Fossil Fuel Dependency: Solar-powered production eliminates reliance on non-renewable energy sources.

5.2 Economic Feasibility

- Cost Competitiveness: Production costs are projected to decrease in regions with abundant solar resources.
- Scalability: Large-scale facilities can produce millions of tons of methanol annually.

5.3 Infrastructure Compatibility

- Existing Systems: Methanol's liquid state allows it to integrate seamlessly into current storage and transportation networks.

VI. PROJECT DETAILS

Research on liquid solar energy production emphasizes the establishment of large-scale gigaplants. Each plant is envisioned to span 10 square kilometers, leveraging advanced solar photovoltaic systems. The projected production capacity per plant is approximately four million tons of methanol annually, with an estimated capital investment of \$2 billion and annual operational costs of \$340 million. Initial deployments are expected in solar-rich regions, enabling cost-effective production and distribution.

VII. FUTURE SCOPE

7.1 Scaling Production Facilities Global implementation of gigaplants will require international collaborations and strategic investments.

7.2 Technological Innovations Advancements in electrolyzers, DAC systems, and catalytic processes will enhance efficiency and reduce costs.

7.3 Policy and Market Integration Supportive policies and incentives for renewable fuels will be critical for widespread adoption. Market integration strategies should focus on reducing barriers to entry and increasing consumer acceptance.

7.4 Diversification of Applications Exploring new applications, such as synthetic chemicals and

advanced hydrogen storage systems, will expand the market for green methanol.

VIII. CONCLUSION

Liquid solar energy offers a sustainable solution to global energy storage and transportation challenges. By integrating solar energy with DAC and methanol synthesis, this approach provides a pathway to carbon-neutral fuels. As research and development progress, liquid solar energy has the potential to play a pivotal role in the transition to a sustainable energy future.

REFERENCES

- [1] *Obrist Group touts benefits of 'liquid solar energy'*. *Bulk Transporter*. Retrieved from <https://www.bulktransporter.com>
- [2] *Obrist Anticipates a Pivotal Shift Towards "Liquid Solar Energy" in 2025*. *North American Clean Energy*. Retrieved from <https://www.nacleanenergy.com>
- [3] Singh, A., Sharma, V., & Patel, R. (2020). *Challenges in Renewable Energy Storage: A Review*. *Renewable Energy Journal*, 45(3), 12-20.
- [4] Zhang, Y., Chen, L., & Wang, T. (2019). *Methanol as a Hydrogen Carrier: Potential and Challenges*. *Journal of Sustainable Energy*, 34(2), 89-97.
- [5] Keith, D. W., Holmes, G., St. Angelo, D., & Heidel, K. (2018). *A Process for Capturing CO₂ from the Atmosphere*. *Joule*, 2(8), 1573-1594.
- [6] Wang, Y., Zhang, H., & Li, Q. (2018). *Advances in Lithium-Ion Battery Storage*. *Energy Materials*, 23(7), 56-63.
- [7] Chen, L., Zhao, X., & Liu, P. (2021). *The Role of Methanol in Renewable Energy Systems*. *Renewable Energy Reports*, 10(4), 223-237.
- [8] Patel, M., & Singh, J. (2020). *Green Fuels: Future Prospects and Challenges*. *Journal of Clean Energy*, 12(3), 144-155.
- [9] International Renewable Energy Agency (IRENA). (2021). *Renewable Energy Statistics 2021*. IRENA Publications.
- [10] Global Methanol Institute. (2022). *Methanol's Role in the Energy Transition*. Retrieved from <https://www.methanol.org>
- [11] Raj, S., & Kumar, A. (2020). *Direct Air Capture Technologies: Innovations and Applications*. *Climate Solutions Journal*, 15(6), 78-90.
- [12] Renewable Energy Policy Network. (2021). *Renewables 2021 Global Status Report*. REN21 Publications.
- [13] Green, J. M., & Wilson, P. (2022). *The Economics of Carbon-Neutral Fuels*. *Energy Economics Review*, 29(8), 345-363.
- [14] Smith, R., & Taylor, G. (2021). *Advances in Solar-Powered Electrolysis*. *Journal of Renewable Chemistry*, 45(1), 101-117.
- [15] Lee, K., & Park, S. (2022). *Carbon Capture and Utilization in Methanol Production*. *Clean Energy Technologies*, 37(5), 123-131.