

A Concept of Multiple Stress Testing Machine

Mr. Omkar Joshi¹, Mr. Sairaj Shetye², Mr. Soham Agaskar³, Mr. Sahil Patil⁴

¹(Mechanical Engineering, VIVA Institute of Technology, India)

²(Mechanical Engineering, VIVA Institute of Technology, India)

³(Mechanical Engineering, VIVA Institute of Technology, India)

⁴(Mechanical Engineering, VIVA Institute of Technology, India)

Abstract : Multiple Stress testing is crucial in material science, enabling evaluation of material durability under cyclic loads. Conventional machines are specialized for specific stress types like rotary bending, axial, or torsional stress, leading to high costs and inefficiencies for small and medium-sized manufacturers requiring multiple testing modes. This project addresses these challenges by developing an integrated multiple stress testing machine capable of performing rotary bending, axial, and torsional stress tests in a single setup.

For axial testing, a pneumatic cylinder applies alternating tensile and compressive loads to a fixed specimen, with precise load control to ensure tests exceed fatigue limits. An encoder counts linear movements to record data over specific cycles, plotting load against fatigue life. For rotary bending and torsional tests, the tri-stress testing machine uses a dual chuck system, allowing smooth rotation via bearings. Weights induce bending stresses as a motor rotates the specimen, with a tachometer monitoring revolutions until failure. Torsional stress is applied by twisting one end while the other remains fixed, following a similar testing approach.

The project includes design sketches, material selection, load and stress calculations, and an AutoCAD model to guide fabrication. The tri-stress testing machine aims to enhance efficiency, reduce costs, and support material evaluation across industries, contributing to advancements in product reliability.

Keywords – Multiple Stress, Fatigue, shear, axial. Torsional.

I. INTRODUCTION

Material durability under cyclic loading is a critical factor in the design and evaluation of components used in various industries, including aerospace, automotive, and manufacturing. Multiple Stress testing, which evaluates a material's behavior under rotary bending, axial, and torsional stresses, is a widely used method for assessing fatigue resistance and mechanical properties. However, traditional testing methods often rely on specialized machines designed for a single type of stress, leading to increased costs and inefficiencies, especially for small and medium-sized enterprises that require multiple testing modes.

This paper addresses these challenges by presenting the design of an integrated Multiple Stress testing machine capable of performing all three types of stress tests.

1.1 Rotary bending Definition: Rotary bending stress occurs when a component is subjected to bending loads that rotate about an axis. This type of stress is common in rotating shafts and beams. Example: Components like aircraft wings experience rotary bending due to aerodynamic forces.

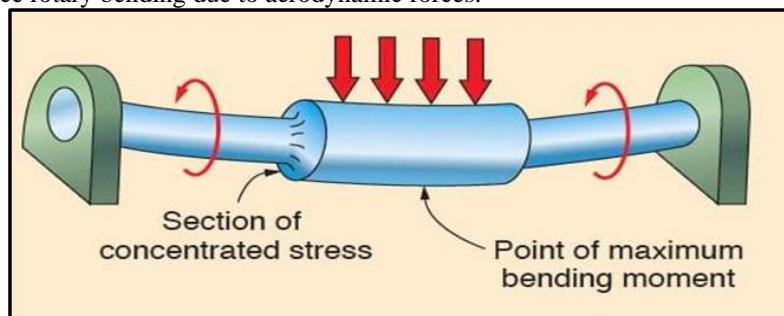


Fig. 1 Rod under rotary bending stress [GOOGLE]

1.2. Torsional Definition: Torsional stress arises when a material is twisted about its longitudinal axis, causing shear stress along the material. This is typical in drive shafts and couplings. Example: A car's drive shaft experiences torsional stress when transmitting power from the engine to the wheels

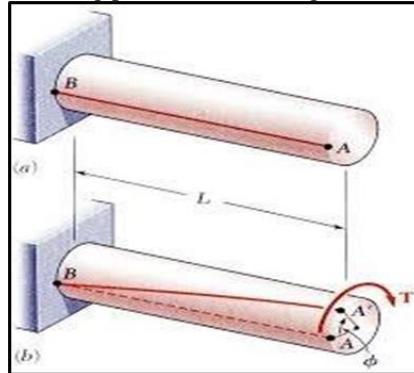


Fig. 2 Rod under torsional stress [GOOGLE]

1.3. Axial Definition: Axial stress is the stress that occurs when a load is applied along the length of a material, leading to tension or compression. This is crucial for understanding the behaviour of structural components. Example: Columns in buildings experience axial stress due to the weight they support within a single setup. By combining these functionalities, the machine aims to reduce costs, simplify operations, and increase accessibility for manufacturers and research laboratories.

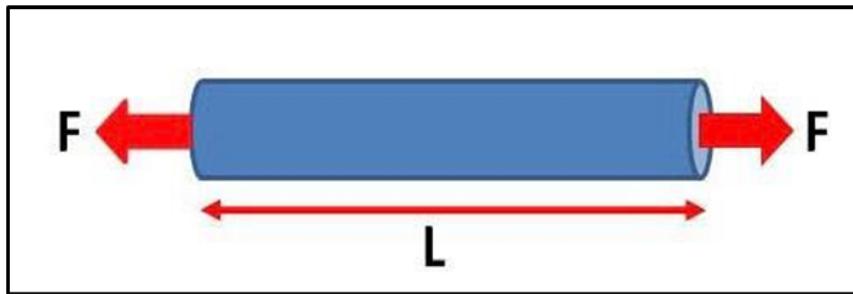


Fig. 3 Rod under axial stress [GOOGLE]

The design focuses on modularity, precision, and ease of operation. It integrates a pneumatic system for axial loading, a dual-chuck assembly for rotary and torsional tests, and precise monitoring systems for real-time data acquisition. Comprehensive design calculations, material selection, and a detailed CAD model provide a robust framework for the machine's fabrication and implementation. This innovative approach not only streamlines the testing process but also sets the foundation for advancements in material testing technologies.

1.4 Shear Definition: Shear stress arises when a force acts tangentially or parallel to the surface of a material, causing adjacent layers to slide relative to one another. It is a critical parameter in understanding material behavior under deformation and is commonly observed in applications involving torsion, cutting, or shear loads. The magnitude of shear stress is calculated using the formula:

$$\tau = F/A$$

where τ is the shear stress, F is the applied force, and A is the area over which the force acts.

Shear stress plays a significant role in structural engineering, fluid mechanics, and material science. For instance, it is crucial in designing beams, shafts, and fasteners to ensure they can withstand shear forces without failure. In fluids, shear stress affects viscosity and flow characteristics. Understanding and managing shear stress ensures the safety and efficiency of various mechanical and structural systems.

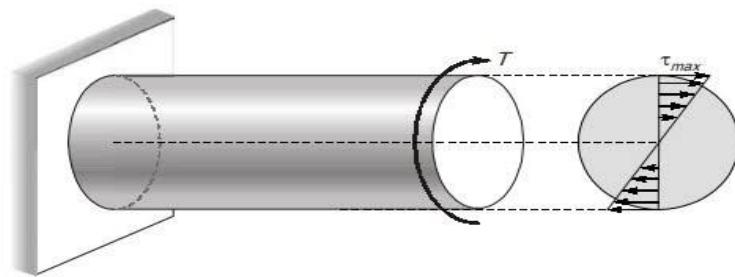


Fig. 4 Rod under Shear Stress [GOOGLE]

II. LITERATURE REVIEW

Schmidt M. R., Müller M. (2021) [1] review recent advancements in fatigue testing, highlighting innovations in equipment, real-time monitoring, and data analysis methods. They emphasize the importance of automation and digitalization in improving testing efficiency and accuracy, meeting industry demands for better material performance assessments, and fostering continuous improvements in fatigue testing practices.

Mohammed Asif Kattimani et al. (2020) [2] explore a fatigue testing methodology for evaluating materials under fluctuating loads. The study emphasizes simulating real-world conditions accurately and contributes to understanding material fatigue strength and failure mechanisms. It enhances existing fatigue testing standards and provides guidelines for material performance in cyclic loading applications.

Yang L., Hu M., Zhao D. et al. (2020) [3] propose a method for assessing the fatigue reliability of vehicle wheels under multiaxial loading. Their predictive model, validated through simulations and experiments, highlights the role of multiaxiality in fatigue assessment, crucial for enhancing wheel performance and safety in automotive design.

Grissa R., Zemzem F., Manchoul S. et al. (2019) [4] present a predictive approach to assess the high-cycle fatigue limit of AISI 316L stainless steel. Using experimental data and statistical modeling, they correlate material properties with fatigue limits, aiding in optimizing manufacturing processes for applications demanding high reliability, such as chemical and marine environments.

Ranjbar M., Bakhshandeh H., Khedmatgar H. (2018) [5] introduce a novel fatigue testing methodology for composite materials, focusing on real-world loading scenarios. The study explores the impact of fiber orientation and matrix properties on fatigue life, offering insights to guide composite material design and manufacturing, especially in aerospace and automotive industries.

Wang Y., Zhou W., Liu X. (2017) [6] investigate the multi-axial fatigue behavior of high-strength steels, commonly used in structural applications. Their experimental tests and predictive models help enhance the understanding of fatigue mechanisms, offering valuable guidelines for improving safety and reliability in engineering design.

Sahu R. K., Kumar V. (2016) [7] detail the design and fabrication of a hydraulic fatigue testing machine capable of testing materials under cyclic loads. The study demonstrates the machine's effectiveness in evaluating the fatigue characteristics of different materials, benefiting industries focused on material research and quality control.

Harshal Vispute et al. (2015) [8] investigate the fatigue behavior of coiled and compression springs under cyclic loading. Their study determines the endurance limit of these springs, providing valuable insights into manufacturing processes and material selection, ultimately enhancing product reliability and guiding process optimization for spring components.

Gao W., Zhang C., Li Q. (2015) [9] explore the fatigue properties of 3D-printed polymers using a custom testing machine. By analyzing the effects of printing parameters and material composition, the study provides insights into optimizing 3D printing processes and ensuring the reliability of printed parts under cyclic loading.

Chaves V., Madrigal C., Navarro A. (2014) [10] examine the biaxial fatigue behavior of AISI 304L stainless steel, focusing on combined stresses' effect on crack initiation and propagation. Their research demonstrates the

importance of multiaxial stresses in fatigue analysis, informing design practices and improving reliability in structural applications.

Juan Gerardo Castillo Alva et al. (2013) [11] design a pneumatic fatigue testing machine capable of handling loads up to 4 kN. Their study highlights the versatility and portability of the machine, making it suitable for various laboratory settings and enhancing fatigue testing capabilities across different material types.

III. PROBLEM DEFINITION

In today's market, fatigue testing machines are highly specialized and come with a high price tag. These machines are designed to apply specific types of stress to materials, such as rotary bending, axial, or torsional stress, which are essential for evaluating the endurance and performance of materials under cyclic loading. However, each type of stress typically requires a separate testing machine, forcing companies to invest in multiple machines to cover all aspects of fatigue testing.

This creates significant financial burdens, particularly for small and medium-sized manufacturers or research labs, which must allocate substantial resources to acquire separate machines. Additionally, the need for multiple machines leads to increased maintenance, operational complexity, and storage space requirements. These inefficiencies result in higher upfront costs as well as increased operational expenses over time.

Furthermore, the testing process becomes fragmented, as switching between machines for different stress tests slows down the overall testing cycle. For industries that rely on rapid prototyping, research, and development, this fragmentation can delay product development and innovation. The current situation highlights the need for a more integrated, cost-effective solution that can handle multiple types of stress testing within a single machine, streamlining operations and reducing expenses for companies across various sectors.

IV. CONCEPTUAL IDEAS

When designing a multi-stress testing machine, the orientation of the machine—whether horizontal or vertical—has significant implications on its performance, stability, and space efficiency.



Fig. 5 Front view machine of Rotary Bending & Torsional Stress testing [AUTOCAD]

A horizontal configuration generally provides better alignment of components such as dual chucks, bearings, and motors along a single axis. This alignment is crucial for the precise application of rotary bending and torsional stresses, as even slight misalignments can lead to inaccurate test results. Additionally, axial loads—whether tensile or compressive—can be applied more easily in a horizontal setup, since gravity does not interfere with the load direction. This allows for consistent application of stress during cyclic testing, making it easier to achieve accurate results in both individual and combined stress tests. The horizontal design can also be more stable due to the lower center of gravity, which helps reduce vibrations during high-speed rotations, essential for maintaining the reliability of test outcomes. Furthermore, the horizontal configuration makes the machine more accessible, allowing for easier installation of specimens, adjustment of components, and regular maintenance.

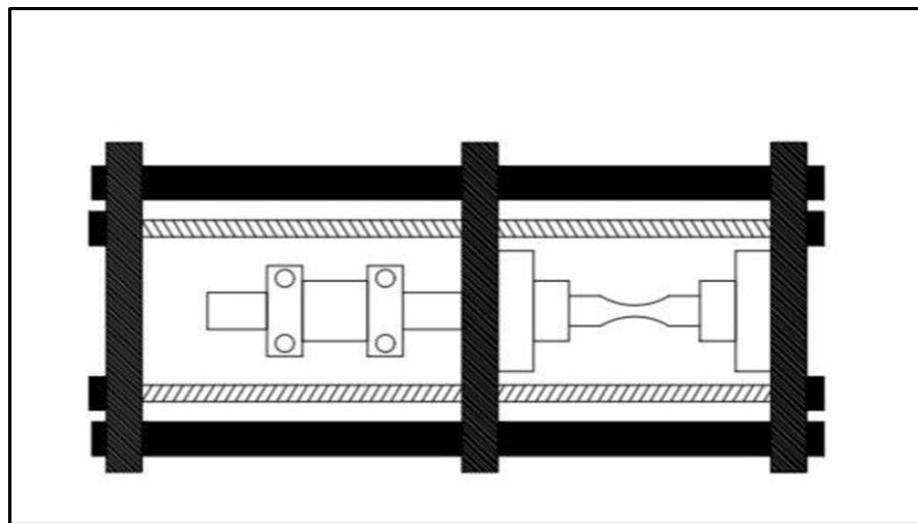


Fig. 6 Top view of Pneumatic Axial Stress testing machine [AUTOCAD]

One of the significant advantages of the horizontal machine configuration is the ability to quickly swap or adjust the chuck system to convert from one type of stress testing to another. This modularity enables seamless transitions between axial, rotary bending, and torsional tests. For instance, by using interchangeable chucks, a quick switch from rotary bending to torsional testing can be achieved by simply mounting a different chuck without requiring a complete reconfiguration of the machine. This flexibility not only saves time but also reduces downtime during testing transitions, making the machine more efficient for varied testing requirements. The integration of adjustable loading arms or pneumatic systems further enhances this versatility, allowing for rapid adaptation between different stress types, ensuring smooth and effective multi-stress testing.

However, horizontal machines do have some challenges. One major issue is the space it occupies. These machines typically require more floor space, which can be a significant constraint in smaller laboratories or manufacturing environments. The need to accommodate additional mechanisms, such as the dual chuck system and loading arms, further contributes to the spatial requirement. Additionally, integrating multiple stress types—such as combining axial, torsional, and bending loads—requires precise synchronization of the forces, which can complicate the design and increase the need for advanced control systems. Despite these challenges, the horizontal configuration offers more flexibility, stability, and accuracy for multi-stress testing.

On the other hand, a vertical configuration is particularly beneficial for saving floor space, making it a good option for facilities with limited room. The vertical design has the advantage of gravity assisting in the application of compressive axial loads, simplifying the load application mechanism. This can be particularly advantageous when testing materials under compressive stress, as the vertical setup naturally helps with gravity-assisted loading. The compactness of vertical machines also makes them ideal for educational purposes or research environments where space efficiency is a priority, especially where only a single type of test is conducted frequently.

However, the vertical setup does have some inherent limitations when it comes to certain types of stress testing. The higher centre of gravity in vertical machines can lead to stability issues, particularly during high-speed rotations in rotary bending or torsional testing. These stability concerns can introduce vibrations, which may affect the precision and accuracy of the results. Maintaining precise alignment between axial, bending, and torsional forces in a vertical machine is also more challenging, as the forces may interact in ways that complicate the stress distribution. Moreover, applying tensile axial loads in a vertical machine is more complicated due to the influence of gravity, requiring additional mechanisms to counteract gravitational effects. The stacked design of vertical machines can also make it harder to access components for maintenance or adjustments, leading to longer downtime and reduced operational efficiency.

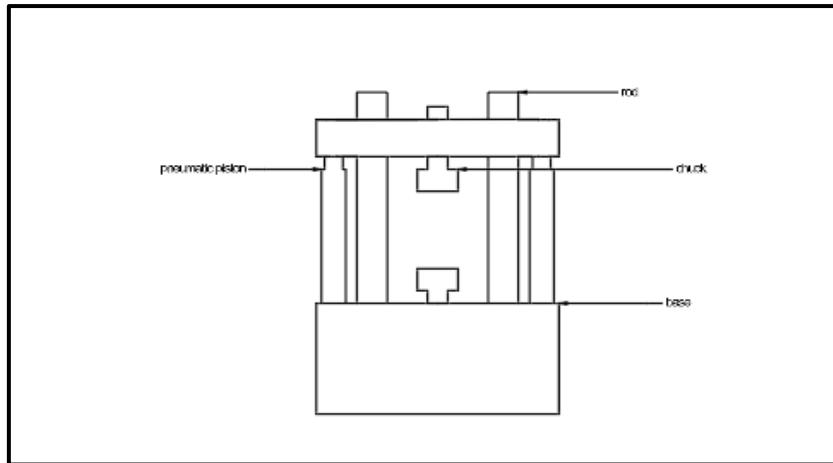


Fig. 7 Vertical Multi Stress Testing machine [AUTOCAD]

In the case of shear stress testing, a vertical configuration offers an advantage in terms of simplicity. Since shear stresses can often be generated by applying opposing forces in a vertical setup, the vertical design naturally lends itself to shear testing. Fixtures such as four-point bending systems or shear jigs can be more easily adapted to this orientation, making the application of shear forces simpler and more direct. This is especially useful for materials testing where shear stress is a key component. In contrast, shear stress testing in a horizontal machine is more challenging, as it requires precise control over opposing forces and careful alignment to ensure the generation of pure shear. Additionally, the horizontal machine might need more specialized fixtures and adjustments to avoid interference from other stress types like bending or torsion.

Moreover, a vertical configuration offers another significant advantage in terms of automation—particularly through the use of automatic chuck-swapping mechanisms. Just as CNC machines have automatic tool changers, a vertical machine can be designed with an automated chuck-swapping system that allows for quick and efficient transitions between different testing modes. This mechanism enables automatic removal and replacement of chucks used for various stress tests—such as switching from torsional to rotary bending to axial testing—without manual intervention. This is similar to the "punch changing" systems found in CNC machines, where tools are swapped automatically for different processes. The ability to automatically change chucks can dramatically reduce downtime, increase throughput, and improve operational efficiency, making it ideal for high-volume testing environments where multiple tests are frequently conducted.

In conclusion, while the vertical configuration offers significant advantages in terms of space efficiency, shear stress testing, and automation via automatic chuck-swapping mechanisms, the horizontal configuration excels in terms of stability, precision, and ease of alignment for multi-stress testing. The horizontal setup is better suited for precise applications of rotary bending, torsional, and axial stresses, offering flexibility in quick transitions between stress types and minimizing downtime. Although it occupies more space, the horizontal configuration's performance and reliability make it the preferred choice for comprehensive material testing, especially in applications where multiple types of stresses need to be applied simultaneously or in rapid succession. Ultimately, the choice between horizontal and vertical configurations depends on the specific testing needs, available space, and the types of stresses to be evaluated.

V. RESULT

During axial stress testing, the specimen, which has a reduced diameter in the center, is placed between two chucks. One end of the specimen is fixed, while the other end is subjected to alternating tensile and compressive loads applied by a pneumatic cylinder. The load is applied cyclically, with the machine testing the specimen by exceeding its fatigue limit to determine how many cycles it can withstand before failure. The cyclic loading simulates real-world operational conditions where materials often experience varying tensile and compressive forces. The performance of the specimen is monitored through precise load control, ensuring accurate measurements of the number of cycles to failure. The data is plotted with the number of cycles on the X-axis and the applied load on the Y-axis, giving a clear indication of the specimen's fatigue life under axial stress conditions.

For rotary bending testing, the machine undergoes modifications where one end of the specimen is fixed, and the other end is rotated. A load is applied to the middle section of the specimen using bearings, allowing it to bend under cyclic loading. This test evaluates the specimen's resistance to fatigue failure under rotary bending conditions, where the specimen experiences bending stress due to the rotation of one end while the other remains

stationary. The results, shown on a graph with cycles on the X-axis and load on the Y-axis, illustrate how the specimen responds to the cyclic bending stress.

In torsional stress testing, additional modifications are made to the machine. One end of the specimen is fixed while the other is rotated, applying torsional (twisting) stress. This testing mode simulates the effects of twisting forces on the specimen and evaluates its ability to withstand such forces over multiple cycles. As with the other tests, the results are plotted with cycles on the X-axis and load on the Y-axis, allowing for a clear visualization of the specimen's fatigue life under torsional stress.

The machine is capable of seamlessly transitioning between these different stress tests, with modifications completed within a maximum of 5 minutes. After each test, the results are displayed in a graph format, showing the relationship between cycles and load, which provides a clear understanding of the specimen's fatigue behavior under each stress type.

For combined stress testing, the machine can simultaneously apply multiple types of stress (such as axial, bending, and torsion), allowing for more realistic simulations of the combined loading conditions materials may experience in real-world applications. The data from combined stress testing is analyzed similarly, with multiple factors influencing the specimen's fatigue life, and the results are plotted accordingly to provide insight into how the material performs under complex loading conditions.

VI. CONCLUSION

The Multiple Stress testing machine presented in this study provides an innovative solution for conducting fatigue testing under rotary bending, axial, and torsional stresses in a single setup. By integrating multiple testing modes into one system, the design reduces both cost and space requirements, making it ideal for small and medium-sized manufacturers and research labs. The machine's ability to quickly convert between different stress types within 5 minutes enhances its operational efficiency and versatility, allowing for high-throughput testing. The modular design and horizontal configuration provide stability and adaptability, enabling testing of a wide range of materials. With real-time data visualization, the machine facilitates detailed analysis of material fatigue performance. Future improvements in automation and advanced data analysis features could further enhance the machine's functionality, making it an even more valuable tool for material testing applications.

Acknowledgements

We extend our sincere gratitude to Asst. Prof. Omkar Joshi, our faculty advisor, for his expert guidance, and to Dr. Niyati Raut, HOD, for her support and resources. We also thank Dr. Arun Kumar, our principal, for fostering a research-oriented environment that enabled the successful conceptualization of the Multiple fatigue testing machine

REFERENCES

- [1] M. R. Schmidt and M. Müller, "Overview of innovations in fatigue testing methodologies and technologies emphasizing automation and data analysis improvements," 2021.
- [2] K. M. Asif, M. M. Ghori, M. I. Khatib, and M. Sadiq, "Explores fatigue testing methodology for materials under fluctuating loads, improving understanding of fatigue strength and failure mechanisms," 2020.
- [3] L. Yang, M. Hu, and D. Zhao, "Proposes method for evaluating fatigue reliability of vehicle wheels under multiaxial loading, enhancing performance and safety in automotive design," 2020.
- [4] G. Rissa, F. Zemzem, S. Manchoul, et al., "Predictive approach of high-cycle fatigue limit of finished turned AISI 316L steel," Experimental and Statistical Modeling for Fatigue Limit Estimation," 2019
- [5] M. Ranjbar, H. Bakhshandeh, and H. Khedmatgar, "New methodology for composite material fatigue testing replicating real-world loading scenarios and analyzing fatigue life factors," 2018.
- [6] Y. Wang, W. Zhou, and X. Liu, "Investigates multi-axial fatigue behavior of high-strength steels, developing a predictive model for fatigue life assessment," 2017.
- [7] R. K. Sahu and V. Kumar, "Details the design and performance evaluation of a hydraulic fatigue testing machine for cyclic load testing," 2016.
- [8] H. Vispute, A. Kamane, V. Patil, S. Shaha, and S. Katkar, "Investigates fatigue behavior of coiled and compression springs, determining endurance limits to enhance product reliability and manufacturing processes," 2015.
- [9] W. Gao, C. Zhang, and Q. Li, "Examines fatigue properties of 3D printed polymers, focusing on printing parameters' effects on fatigue life," 2015.
- [10] V. Chaves, C. Madrigal, and A. Navarro, "Examines fatigue behavior of AISI 304L stainless steel under biaxial loading, revealing insights into crack initiation and propagation," 2014.
- [11] J. G. Castillo Alva, E. C. Mejia Sanchez, M. A. Meggiolaro, and J. T. Pinho de Castro, "Designs pneumatic fatigue testing machine for cyclic loading, emphasizing portability and performance across different material types," 2013.