

Optimization of Packaging Material Properties and Machine Adjustments for Improved Processing and Sustainability

Asst. Prof. Swapnil Raut¹, Prem Chaudhari²

¹(Department of Mechanical Engineering, Viva Institute of Technology/ University of Mumbai, India)

²(Department of Mechanical Engineering, Viva Institute of Technology/ University of Mumbai, India)

Abstract : This study focuses on developing sustainable packaging materials and adapting manufacturing machinery to reduce the environmental impact of single-use plastics in India. Traditional plastics like polyethylene and polypropylene are non-biodegradable, prompting the exploration of biodegradable alternatives such as Polylactic Acid (PLA), Polybutylene Adipate Terephthalate (PBAT), and Polybutylene Succinate (PBS). These biopolymers offer compostability and mechanical properties suitable for applications like cling films and industrial wrapping. The research aims to create materials that meet functional standards for hygiene, strength, and flexibility while complying with environmental regulations. It also minimizes capital investment by repurposing existing plastic processing machinery through targeted adjustments in temperature, pressure, and speed. Prototyping and testing confirm that these biopolymers match or surpass the performance of conventional plastics, offering a scalable, eco-friendly solution for transitioning industries to sustainable packaging.

Keywords- Biodegradable polymers, machine adjustments, packaging sustainability, PLA, PBAT, PBS

I. INTRODUCTION

Plastic pollution has emerged as a critical environmental challenge, with the packaging industry being a major contributor to single-use plastic waste. Conventional plastics, such as polyethylene and polypropylene, are non-biodegradable, posing long-term ecological threats. In response to India's ban on single-use plastics, there is a pressing need for sustainable alternatives that balance functionality, cost-effectiveness, and environmental compatibility. This paper focuses on the efforts of Cariyoo, a brand by GD Global Inc., to address this challenge. Founded by Mr. Sonu Agarwal and Mr. Nilesh Raut, the startup specializes in biosynthetic molecule innovation using aerobic and anaerobic fermentation processes. Their state-of-the-art manufacturing facility in Dadra & Nagar Haveli is dedicated to producing compostable films and packaging materials that serve as viable replacements for traditional plastics. The study investigates the potential of three biopolymers—Polylactic Acid (PLA), Polybutylene Adipate Terephthalate (PBAT), and Polybutylene Succinate (PBS)—as sustainable alternatives. These materials are compostable and exhibit properties such as strength, flexibility, and durability, comparable to conventional plastics. The paper further explores the challenges and solutions in adapting existing plastic manufacturing equipment, including extrusion, injection moulding, and thermoforming processes, to accommodate these biopolymers. The subsequent sections detail the research methodology, material testing, manufacturing modifications, and the broader implications of adopting these eco-friendly alternatives. The findings contribute to a scalable framework for transitioning from traditional plastics to sustainable packaging solutions, supporting environmental conservation while maintaining industrial efficiency.

II. PROJECT BACKGROUND

2.1 Project Background

The escalating plastic pollution crisis calls for sustainable, commercially viable packaging solutions. Biopolymers like Polylactic Acid (PLA), Polybutylene Adipate Terephthalate (PBAT), and Polybutylene Succinate (PBS) have emerged as promising alternatives, offering compostability and performance comparable to conventional plastics in terms of strength, flexibility, and hygiene.

2.1.1 Overview of the Plastic Pollution Crisis

The packaging industry generates immense plastic waste, with 23 million tons entering aquatic ecosystems annually, harming wildlife and ecosystems while releasing toxins into groundwater. Additionally, plastic production accounts for 3.4% of global emissions, underlining the need for sustainable alternatives to mitigate environmental and climate impacts.

2.1.2 Biopolymers as Sustainable Alternatives:

Derived from renewable sources, biopolymers decompose within months under suitable conditions, making them ideal for food, agriculture, and industrial packaging. However, integrating these materials into existing manufacturing systems requires overcoming challenges such as unique processing behaviours and machinery compatibility.

2.1.3 Machines Available at the Industry

This project demonstrates the feasibility of using biopolymers like PLA, PBAT, and PBS to achieve the hygiene, strength, and flexibility of conventional plastics. The machinery currently available at the manufacturing facility includes:

- **Vertical Bending Machine:** Mixes PLA with additives (100–500 kg capacity, 8–14 HP power).
- **Plastic Extruder & Blow Film Machine:** Processes PLA into plastic bags (30–50 kW power).
- **Plastic Bag Printing Machine:** Prints on plastic rolls.
- **Polythene Bag Cutting and Sealing Machine:** Cuts and seals printed rolls, ensuring efficient processing.

III. METHODOLOGY

To develop sustainable packaging and adapt existing machinery, the following approach will be taken:

3.1 Material Research and Testing

Biodegradable materials, derived from both organic and synthetic sources, offer a sustainable alternative to traditional plastics by naturally breaking down into harmless compounds through microbial action. These materials vary in strength, durability, and degradation rates, with some, like PLA, requiring specific conditions for proper breakdown. Their applications span across packaging, agriculture, medical devices, textiles, and construction, helping to reduce waste and pollution. However, challenges remain, including performance limitations, the need for proper disposal infrastructure, and concerns over resource sustainability. Despite these hurdles, biodegradable materials hold immense promise for a more environmentally conscious future, offering a path toward reducing our reliance on harmful plastics and fostering a circular economy.

3.2 Material Selection

Fig.1 Compostable Polymer alternative to Plastic.

Prioritizing biodegradable materials that offer optimal performance and environmental benefits requires selecting those that decompose efficiently within a reasonable timeframe without compromising functionality. Materials like PLA (polylactic acid) and PHA (polyhydroxyalkanoates) are strong candidates, as they balance durability with the ability to break down under appropriate conditions, such as industrial composting. These materials not only reduce waste but also ensure minimal environmental impact by fully decomposing into non-

toxic by-products. Selecting materials that degrade swiftly and safely, without leaving harmful residues, ensures both high performance in use and a sustainable end-of-life, contributing to a cleaner, more circular economy.

3.3 Machinery Modification

Fig. 2 Polyethene bag cutting and sealing machine.

Fig. 3 Plastic bag extrusion with blown film.

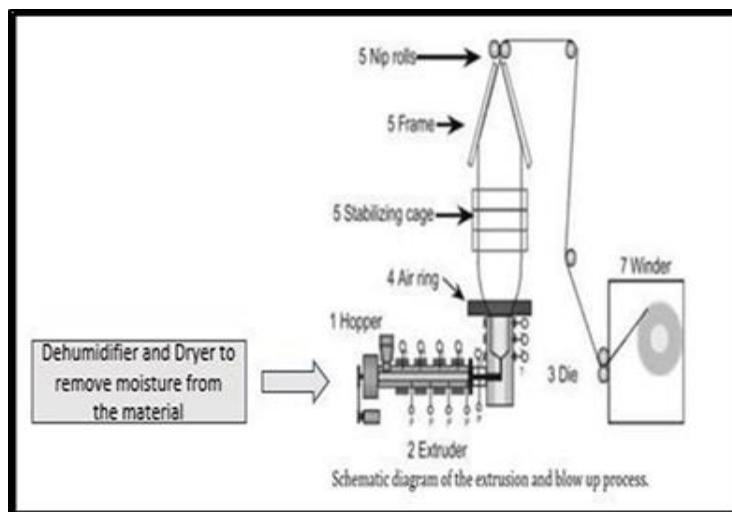


Fig. 4 Schematic diagram of extrusion and blow-up process.

Upgrading existing equipment to handle biodegradable materials requires cost-effective and efficient modifications that minimize disruption to current operations. Key adjustments may include optimizing processing temperatures, modifying moulding or extrusion settings to accommodate varying degradation rates, and incorporating specialized composting or waste management systems. By carefully evaluating the performance characteristics of biodegradable materials, such as their temperature sensitivity or moisture requirements, businesses can implement targeted upgrades that maintain product quality while enhancing sustainability. This approach ensures a smooth transition to greener alternatives without significant financial burden or operational downtime.

3.4 Parameter Standardization

Optimizing and standardizing key processing parameters—such as temperature, pressure, and speed—is crucial to ensuring consistent quality and compatibility with sustainable materials. Adjustments to these parameters should be tailored to the unique properties of biodegradable materials, which may require different processing conditions compared to conventional plastics. By fine-tuning factors like extrusion temperature, molding pressure, and production speed, manufacturers can achieve reliable results, prevent material degradation, and maintain high product standards. Standardizing these parameters across production lines ensures uniformity and efficiency, enabling seamless integration of eco-friendly materials without compromising performance or quality.

3.5 Integration and Testing

Incorporating selected materials and refined machinery settings involves a process of iterative testing to optimize both efficiency and sustainability. By carefully integrating biodegradable materials with newly adjusted equipment, manufacturers can assess performance under real-world conditions and fine-tune parameters such as temperature, pressure, and speed. Continuous testing allows for the identification of any potential issues, ensuring that the system operates at peak efficiency while minimizing waste and energy consumption. This iterative approach not only enhances product quality but also ensures the long-term sustainability of production processes, paving the way for a smoother transition to more eco-friendly materials.

IV. CONCLUSION

This project highlights the potential of biopolymers like PLA, PBAT, and PBS as sustainable alternatives to single-use plastics, requiring only minor machinery adjustments for effective processing. The proposed solutions promise reduced plastic waste, support for a circular economy, and alignment with environmental regulations, making them ideal for industries like food and agricultural packaging. While current testing is limited to lab-scale experiments, further real-world trials are necessary to ensure scalability and reliability. Future research should enhance biopolymer performance, optimize machinery compatibility, and assess material resilience, paving the way for innovative and eco-friendly manufacturing solutions.

REFERENCES

Journal Papers:

- [1] Idowu David Ibrahim et al., "Sustainable Packaging: The Need for Bio-Based and Recyclable Materials in Packaging," *Journal of Sustainable Development*, Vol. 22, pp. 115-130, 2022.
- [2] Jorge Vendries, Beverly Sauer et al., "A Meta-Review of Environmental Benefits of Material Attributes in Packaging and Food Service Ware: A Life Cycle Assessment Approach," *Journal of Environmental Management*, Vol. 48, pp. 395-414, 2020.
- [3] Aastha Bhardwaj et al., "Lignocellulosic Biomass as Biodegradable Alternatives to Single-Use Plastics in Food Packaging," *Environmental Science and Technology*, Vol. 56, pp. 220-233, 2020.
- [4] Giuseppe Rossi et al., "NeoPalea: An Eco-Friendly Composite for Sustainable Tertiary Packaging," *Composites Science and Technology*, Vol. 75, pp. 45-59, 2020.
- [5] Katrin Molina-Besch, Fredrik Wikstrom et al., "Life Cycle Assessments in Food Supply Chains: Indirect Environmental Impacts of Packaging," *Journal of Cleaner Production*, Vol. 174, pp. 234-247, 2018.
- [6] Krzysztof Pikoń, Monika Czop, "Environmental Impact of Biodegradable vs Conventional Plastics: A Life Cycle Assessment of PLA," *Environmental Impact Assessment Review*, Vol. 45, pp. 189-201, 2013.
- [7] Shilpi Sharma, Maneesha Shukul, "Eco-Friendly Packaging in Consumer Goods: Environmental Consciousness Among Homemakers in Vadodara, India," *Environmental Economics and Policy Studies*, Vol. 14, pp. 90-101, 2012. 21
- [8] Shobhit Kumar, Satish Kumar Gupta, "Biodegradable Pharmaceutical Packaging Materials: Alternatives to Plastic Packaging," *International Journal of Environmental Science and Technology*, Vol. 10, pp. 229-239, 2012.
- [9] Alina Iosip, Mercedes Hortal et al., "Life Cycle Assessment of Recycled Paper Packaging in Romania," *Resources, Conservation and Recycling*, Vol. 54, pp. 1412-1420, 2010.
- [10] Chien-Chung Huang, Hwong Ma, "Integrating Qualitative and Quantitative Methods for Assessing Environmental Impacts of Packaging Materials," *Environmental Science & Technology*, Vol. 37, pp. 472-483, 2003.