

Department of Electronics and Telecommunication Engineering

Course Name: Bridge Course on 5G Wireless Standard

Design

Name of the Faculty: Mrs. Meena Perla

Designation: Assistant Professor

Organization/Institution: VIVA Institute of Technology

Duration: 08th July 2024 to 11th October 2024

Time: 30 hours

Number of Students: 16

Course Objectives:

1. To design practical wireless systems

- 2. To design standards-based practical wireless systems for current jobs in the wireless communication industry
- 3. To bridge the gap between the theory and practise of 5G wireless communication systems, and consequently also the gap between academia and industry.

Course Outcomes:

After successful completion of the course, the students are able to

- 1. Understand concept of 5G transceivers
- 2. Understand transceiver specifications
- 3. Design and implement a 5G compliant wireless system in MATLAB.

Programme Summary:

Duration: 30 Hours

Venue: VIVA Institute of Technology, Shirgaon.

Electronics & Telecommunication Engineering Department of VIVA Institute of Technology or ganized a 30 hours' certificate course on "5G Wireless Standard Design" during 8th July 2024 to 11th October 2024.

The students normally have strong theoretical background in wireless communications systems, but negligible exposure on the use of this theory to design practical wireless systems. And current jobs in the wireless communication industry require design of standards-based practical wireless systems. The objective of this course is to bridge the gap between the theory and practice of 5G wireless communication systems, and consequently also the gap between academia and industry.

Department of Electronics and Telecommunication Engineering

To achieve the objective, underlying concepts of 5G transceivers was taught in the class, and the students were expected to read the 5G standard documents to understand the transceiver specifications. The students then designed and implemented in MATLAB a 5G compliant wireless system. The course involved a MATLAB coding component, which was considered for evaluation. Lastly students discussed possible evolutionary paths for the 5G standard.

Topics covered in course:

Sr.no	Contents	Hrs.						
	Course Introduction							
	Key 5G Technologies - Adaptive Modulation and Coding (AMC)							
1	Key 5G Technologies - Hybrid automatic repeat request (HARQ)							
	Key 5G Technologies - Orthogonal frequency division multiplexing (OFDM)							
	5G Numerology							
	5G frame structure							
	5G physical downlink shared channel (PDSCH) transmit chain– CRC							
2	generation	3						
	5G PDSCH transmit chain – code block segmentation							
	5G PDSCH transmit chain – LDPC coding							
	5G PDSCH transmit chain – rate matching							
3	5G PDSCH transmit chain – interleaving and concatenation	3						
	PDSCH transmit chain – scrambling and modulation							
4	5G PDSCH receive chain	3						
	5G PDSCH – map receiver design							
	5G baseband – RF conversion							
5	Indigenous 5G network architecture	3						
	5G physical downlink control channel (PDCCH) transmit chain- introduction							
	5G PDCCH transmit chain – CRC and segmentation							
	5G PDCCH transmit chain – Polar encoding							
6	5G PDCCH transmit chain – sub-block interleaver	2						
	5G PDCCH transmit chain – control resource set (CORESET) design							
7	5G physical uplink control channel (PUCCH)	2						
	Multiple input multiple output (MIMO) transceiver chain							
8	MIMO transceiver chain	2						
9	5G demodulation reference signal (DM-RS) design	3						
	5G sounding reference signal (SRS) design							
10	5G SRS design	2						
	5G channel state estimation reference signal (CSI-RS)							
11	5G CSI-RS	2						
	5G MIMO transceiver chain							
12	5G FR1/FR2 design	2						
	5G initial access							

Vishnu Waman Thakur Charitable Trust's VIVA Institute of Technology

Approved by AICTE New Delhi, Recognized by DTE, Govt. of Maharashtra And Affiliated to University of Mumbai

NAAC "B++" Grade

Department of Electronics and Telecommunication Engineering

CO-PO MAPPING:

Course	Program Outcome												
Outcome	PO	РО	PO	PO	P0	PO	СО						
	1	2	3	4	5	6	/	8	9	10	11	12	Target level
CO1	3	3	3	3	-	-	3	-	-	3	-	3	3
CO2	2	3	3	3	-	-	3	-	-	3	-	3	2.86
CO3	3	3	3	3	-	-	3	-	-	3	-	3	3
PO Target	2.66	3	3	3	-	-	3	-	-	3	-	3	-

Student Certificate format:

