

VOL. 9 | ISSUE 2 | JULY - DECEMBER 2024

# TECHNEXT

A BIANNUAL TECHNOLOGY REVIEW MAGAZINE



## PUBLISHED BY:

# **VIVA INSTITUTE OF TECHNOLOGY**

## **DEPARTMENT OF COMPUTER ENGINEERING**

Shirgoan, Kumbharpada, Virar(E)- 401305  
www.viva-technology.org/New/Tech-next/

**ISSN (ONLINE) : 2456-5105**

# DISCLAIMER

Tech-Next: A Biannual Technology Review Magazine is published by the Department of Computer Engineering, VIVA Institute of Technology. Views and opinions expressed in the Tech-Next are those of individual authors' and contributors' and it is not in any way a reflection of official policy or views of the editors or publishers. This should not be construed as legal or professional advice. The publisher, editors and the contributors are not responsible for any decisions taken by the readers on the basis of these views and opinions. Although every care is taken to ensure genuineness of the writings in this publication, the publishers Department of Computer Engineering, VIVA Institute of Technology, does not attest to the originality of the respective author's content. Instructors are permitted to photocopy the articles for non-commercial purposes with proper acknowledgement of the authors.

© 2024-25 Department of Computer Engineering, VIVA Institute of Technology. All rights reserved.

Principal: Dr. Arun Kumar  
HOD: Dr. Ashwini Save

Chief Editor: Akshata S. Raut

Published by: Department of Computer Engineering, VIVA Institute of Technology  
Shirgaon, Kumbharpada, Virar(E),  
Vasai-Virar 401305.  
Tel: 0250-6990999  
[www.viva-technology.org](http://www.viva-technology.org)  
[tech-next@viva-technology.org](mailto:tech-next@viva-technology.org)

# ***"Passion, perseverance, and repetition pave the path to greatness."***

Dear Readers,

I am thrilled to witness the dynamic collaboration among the faculty and students of the Department of Computer Engineering, elevating TECH-NEXT to new heights. This technical publication will serve as a wellspring of inspiration, fueling the dedication and enthusiasm of faculty and students towards the department's and institute's progress. My heartfelt congratulations to the editorial team for their outstanding efforts. I extend my best wishes to the entire team for the times ahead.



**Dr. Arun Kumar**

Principal,

VIVA Institute of Technology

# ***Engineering is not only about solving problems but also about creating value and making life better.***

Dear Readers,

At the Department of Computer Engineering, VIVA Institute of Technology, we initiated the publication of 'TECH-NEXT: A Biannual Technology Review Magazine' with a clear vision – to focus on the upcoming generation of technologies that are becoming, or will become, an integral part of our lives. As technical professionals, we recognize the significance and impact of these innovations and aim to enlighten our readers about their implications. It is with great enthusiasm that we present to you the 2nd issue of the 9th volume of our esteemed Technical Magazine, 'TECH-NEXT'.



**Dr. Ashwini Save**  
Head of Department, Computer  
Engineering

However, we received a valuable suggestion during the magazine's launch to include more student-authored pieces. I am delighted to share that since then, over 95% of the articles published have been contributed by our talented students. The overwhelming response prompted us, the editorial board, to carefully select a few from the many submissions we received.

A significant milestone for us is securing the International Standard Serial Number (Online) - ISSN (Online): 2456-5105. This achievement will undoubtedly enhance the reputation of articles published in our Technical Magazine and benefit the contributors in their personal and professional growth.

I extend my heartfelt thanks to my dedicated editorial team for their unwavering support. Gratitude goes to all the authors whose valuable contributions grace this magazine. For the next issue, contributors can send their articles to "[tech-next@viva-technology.org](mailto:tech-next@viva-technology.org)". We aim to publish the forthcoming issue shortly. Until then, happy reading, and let us continue to spread awareness of technology.

# ***"Unveiling the Blueprint of Future Tech"***

Dear Readers,

At the Department of Computer Engineering at VIVA Institute of Technology, we've launched 'TECH-NEXT: A Biannual Technology Review Magazine' with a distinct mission: to spotlight emerging technologies that are set to shape, or are already shaping, our everyday lives. Our journey has been both exhilarating and transformative, and I am thrilled to share our reflections and aspirations as we look towards the future.

As we turn the pages of our latest issue, we are reminded of the remarkable strides we've made in the realm of technology and innovation. Over the past year, we have explored groundbreaking advancements, tackled complex challenges, and spotlighted the brilliant minds driving change across industries.

From the rapid evolution of artificial intelligence to the advancements in sustainable technology, our magazine has aimed to provide a comprehensive view of how these developments are reshaping our world. Our dedicated team of writers and experts has worked tirelessly to bring you in-depth analyses, thought-provoking articles, and cutting-edge research.

As we look to the future, we are at a pivotal moment. The pace of technological advancement is accelerating, presenting both unprecedented opportunities and complex challenges. At TECH-NEXT, our mission remains clear: to provide you with insightful, accurate, and forward-thinking content that keeps you at the forefront of this ever-evolving landscape.

Thank you for your continued support and enthusiasm. Together, let us embrace the challenges and opportunities ahead, and continue to push the envelope of what technology can achieve. Here's to another year of exploration, discovery, and innovation with TECH-NEXT.



**Akshata S. Raut**

Chief-Editor, TECH-NEXT

## **EDITOR'S TEAM**



**DR, ASHWINI SAVE**



**AKSHATA S. RAUT**

# DESIGNING TEAM



**RUTUJA KADAM**



**OMKAR CHAUDHARI**



**MAHESH GHULE**



**PARESH KUDTARKAR**



**SMIT PATIL**



**HARSHWARDHAN PATIL**

# TECHNEXT 2025

## CONTENTS

### INDEX



**01 IMAGE DEEPFAKE DETECTION : ADVANCING AI SECURITY FOR A TRUSTWORTHY DIGITAL FUTURE**

~Omkar Chaudhari, Prachiti Patil, Chirag Bhoir

**02 TRANSFORMING LEARNING THROUGH INTELLIGENT TOOLS AND INTERACTIVE EXPERIENCES**

~ Shubham Kamble, Shreyas Kadam, Vivek Kamble

**03 EXPLAINABLE AI (XAI)**

~ Adarsh Pathak and Vinit Prajapati

**04 TRACK & BOOK**

~ Ketan Sarnobat, Shivangi Prajapati, Nikita Sawant

**05 AI-POWERED SMART HOMES & AUTOMATION**

~ Devansh Bhatt, Adarsh Tiwari, Vineet Soni

**06 EVOLUTION AUTONOMOUS MOBILE ROBOT**

~ Vaishnavi Dubey, Disha Sonigra, Abhinav Yadav

**07 AUGMENTED REALITY-BASED INDOOR NAVIGATION: A TECHNOLOGICAL APPROACH FOR ENHANCED SPATIAL GUIDANCE**

~ Kush Sutar

**08 INTERPRETABILITY OF LLMS: UNDERSTANDING DECISION-MAKING PROCESSES**

~ Siddharth Mishra, Paresh Kudtarkar, Nandini Niwate

**09 REVOLUTIONIZING JOB APPLICATIONS: THE ROLE OF RESUME HUBS IN MODERN RECRUITMENT**

~ Abhishek Panikar, Smit Patil, Daksh Patil

# IMAGE DEEPCODE DETECTION: ADVANCING AI SECURITY FOR A TRUSTWORTHY DIGITAL FUTURE

~ OMKAR CHAUDHARI, PRACHITI PATIL, CHIRAG BHOIR

NEXT  
TECH



## INTRODUCTION:

With the rapid advancement of artificial intelligence and deep learning, creating hyper-realistic manipulated images, known as deepfakes, has become increasingly easy. Deepfakes use advanced algorithms, particularly Generative Adversarial Networks (GANs), to alter or fabricate images in ways often undetectable to the human eye. While these technologies offer positive possibilities, they also pose significant risks in misinformation, identity theft, and digital manipulation. Detecting deepfakes has become a growing challenge, especially as they are widely used in social media, entertainment, and politics. Traditional forensic methods, which rely on checking metadata or simple inconsistencies, are no longer effective against highly sophisticated deepfakes. This project focuses on developing advanced detection systems using convolutional neural networks (CNNs) to spot subtle artifacts and anomalies in synthetic images. By analyzing various deepfake techniques, the goal is to build a robust, adaptive detection model that can keep up with evolving manipulation methods. Ultimately, this work aims to strengthen digital security, protect privacy, and reduce the harmful impact of deepfakes across different sectors.

## WHY DEEPFAKE DETECTION IS IMPORTANT?

In today's digital world, the line between real and fake content is becoming increasingly blurred. Deepfakes — incredibly realistic but entirely fabricated images and videos — are no longer just a fascinating tech novelty. They're being used in ways that can mislead, manipulate, and even cause harm. From spreading false information on social media to impersonating individuals for fraud, deepfakes pose serious threats to personal privacy, public trust, and digital security. What makes this even more concerning is how easily these manipulated images can fool the human eye.

Traditional detection methods that once worked are struggling to keep up with the sophistication of modern deepfakes. As these technologies improve, they become harder to spot and easier to misuse. That's why building effective deepfake detection systems is so crucial. Detecting these subtle manipulations not only protects individuals from identity theft or reputation damage but also helps preserve trust in digital media, journalism, and online communication. Whether it's safeguarding public figures from fake news or protecting everyday people from online scams, deepfake detection is a key part of maintaining honesty and security in the digital age.

## APPLICATION OF DEEPFAKE DETECTION IN TODAY'S WORLD

Deepfake detection isn't just a technical challenge — it has real-world impact across many areas. In social media, it helps stop the spread of false information and protects users from manipulated content. In law enforcement, detecting deepfakes can support criminal investigations and prevent identity fraud. News organizations rely on detection tools to ensure the authenticity of images and videos before sharing them with the public. Even in the entertainment industry, detection helps avoid unauthorized content alterations. Overall, deepfake detection plays a key role in keeping digital spaces safer, more trustworthy, and more transparent for everyone. Let's discuss the advantages of Deepfake detection in today's world.

## ADVANTAGES OF DEEPFAKE DETECTION

**Protects identity and reputation:** Help prevent the misuse of someone's face or voice, safeguarding individuals from false accusations or personal harm.

Maintains trust in digital content: Ensures that images and videos we see online — whether in the news or on social media — are authentic and reliable.

Supports law enforcement and cybersecurity: Assists in detecting fraud, identity theft, and other crimes by spotting manipulated media early.

Prevents misinformation: Helps stop the spread of fake news and misleading content that can influence public opinion or cause panic.

Boosts digital platform security: Allows companies and organizations to quickly detect and remove fake content, maintaining trust with their users.

Encourages safe innovation: While deepfake technology has creative potential, detection ensures it's used responsibly without harming individuals or society.

## CHALLENGES

Rapid advancements in deepfake generation: Deepfake techniques are evolving quickly, making it hard for detection models to keep up.

Lack of diverse and up-to-date datasets: Many detection models struggle to generalize well due to limited training data that doesn't cover all types of manipulations.

Balancing accuracy with speed: Highly accurate models are often slow, while faster models may compromise on detection quality — finding the right balance is tough.

Difficulty in real-time detection: Processing and analyzing content in real time, especially videos, requires significant computational power and optimization.

## CONTRIBUTION IN DEEPFAKE DETECTION

In this project, we have developed a deepfake detection system that combines the power of Convolutional Neural Networks (CNNs) with a simple and user-friendly interface. The CNN model is trained to identify subtle signs of manipulation in images, such as texture inconsistencies, unnatural lighting, and facial anomalies, making it capable of distinguishing between real and fake images with high accuracy. To make this technology accessible and practical, we built an interactive desktop application using Python's Tkinter library. This allows users to easily upload images and receive instant results on whether the image is genuine or deepfake. Our contribution not only focuses on building a strong detection model but also on making it simple for people to use, ensuring that deepfake detection can move beyond research labs into real-world applications where it's needed most.

## CONCLUSION

In conclusion, the image deepfake detection project aims to develop a robust, deep learning-based model to combat the misuse of deepfake technology. By continuously refining the model for greater accuracy, handling diverse datasets, and expanding into video detection, the project will provide a comprehensive solution for identifying manipulated content. The integration of this tool into mobile platforms will make real-time detection accessible to a broader audience, helping individuals and organizations combat digital misinformation and fraud more effectively.

# IMAGE DEEPCODEX DETECTION : ADVANCING AI SECURITY FOR A TRUSTWORTHY DIGITAL FUTURE



OMKAR CHAUDHARI



PRACHITI PATIL



CHIRAG BHOIR

# TRANSFORMING LEARNING THROUGH INTELLIGENT TOOLS AND INTERACTIVE EXPERIENCES

~ ~ SHUBHAM KAMBLE, SHREYAS KADAM, VIVEK KAMBLE

TECHNEXT 2025



## INTRODUCTION:

The integration of Artificial Intelligence (AI) in education is transforming learning by providing adaptive, interactive, and data-driven experiences. AI-powered tools like chatbots, intelligent tutoring systems, and immersive AR/VR personalize education by analyzing student progress and adjusting content in real time. These technologies enhance engagement, accommodate diverse learning styles, and support educators by automating tasks and providing instant feedback, making learning more efficient and effective. However, AI adoption in education also presents challenges, including high costs, accessibility issues, and ethical concerns such as data privacy and AI bias. Over-reliance on technology may reduce human interaction, impacting social learning. To ensure responsible AI integration, efforts must focus on affordability, ethical frameworks, and inclusive access. By addressing these challenges, AI can create a more engaging and equitable learning environment for all students.

## ARCHITECTURE

AI in education integrates various components to create a personalized and interactive learning experience. AI-powered tutors analyze student progress and adapt learning paths, ensuring individualized instruction. Conversational agents and chatbots provide real-time support, helping students with explanations and guidance. Social robots enhance emotional intelligence and social skills by engaging students in interactive learning, fostering better communication and collaboration. Augmented and Virtual Reality (AR/VR) make learning immersive by turning abstract concepts into interactive experiences, improving comprehension and retention. Smart classrooms with IoT devices enable real-time monitoring, allowing teachers to track progress and adjust instruction.

AI-driven gamification technique boost motivation by incorporating rewards and challenges, making learning more engaging. These technologies are transforming traditional education into a more dynamic and student-centered experience.

## APPLICATIONS OF AI LEARNING

AI is transforming education by personalizing learning, automating assessments, and improving accessibility. AI-powered platforms analyze student progress and adapt content to individual learning needs, ensuring better comprehension and retention. By identifying strengths and weaknesses, AI helps educators refine teaching strategies and provide targeted support. Automated assessment tools offer instant feedback, reducing the time and effort required for grading. These tools generate detailed reports on student performance, allowing teachers to address learning gaps more effectively. AI also enhances special education by supporting students with disabilities through speech recognition, text - to - speech applications, and customized learning modules, making education more inclusive. Remote learning has greatly benefited from AI-powered platforms, providing students with access to high-quality education from anywhere. AI-driven virtual classrooms, intelligent tutoring systems, and chatbots offer continuous support, helping students with study materials and answering queries in real time.

As AI continues to evolve, it will further enhance education by making learning more engaging and efficient. Addressing challenges like accessibility, affordability, and ethical concerns will be key to ensuring AI-driven education benefits all learners. AI-powered platforms analyze student progress and adapt content to individual learning needs, ensuring better comprehension and retention.

## PROBLEMS AND MORAL ISSUES

AI in education offers many benefits, but its implementation comes with challenges that need careful attention. One major issue is the high cost of AI technologies, which makes it difficult for underfunded schools to adopt them. Advanced infrastructure, software, and maintenance require significant investment, potentially widening the gap between well-funded and disadvantaged schools. Without proper financial support, AI may contribute to educational inequality rather than bridging it. Another critical concern is data privacy and security. AI systems collect and store large amounts of student data, raising the risk of breaches and unauthorized access. Schools must implement strict security measures to protect sensitive information and ensure transparency in data usage. Without clear policies, students, parents, and educators may struggle to trust AI-driven education. Bias in AI algorithms also poses a significant challenge. If AI models are trained on unbalanced datasets, they may unintentionally favor certain groups while disadvantaging others. This can lead to unfair learning experiences and limit opportunities for students from diverse backgrounds. Developers must ensure AI tools are designed with fairness and inclusivity in mind. Over-reliance on AI in classrooms may also reduce teacher-student interactions. While AI personalizes learning and automates tasks, human teachers play a crucial role in social and emotional development. A balanced approach is necessary to integrate AI without diminishing meaningful classroom engagement. To ensure AI benefits all students, it must be implemented responsibly with clear ethical guidelines and regulatory frameworks. Addressing issues like cost, privacy, bias, and human interaction will help create a fair and effective AI-driven education system that enhances learning while maintaining inclusivity and trust.

## FUTURE SCOPE OF AI IN EDUCATION

The future of AI in education is promising, with advancements in adaptive learning making education more personalized and effective. AI-driven models will analyze student progress in real-time, tailoring lessons to individual needs. This ensures better comprehension and retention, helping students learn at their own pace while receiving targeted support.

Developing ethical AI frameworks is essential to ensure fairness and inclusivity. AI systems must be designed to prevent biases and provide equal learning opportunities for all students, regardless of background. Transparent guidelines and diverse datasets will help create AI models that support a wide range of learners.

Affordability remains a challenge, but efforts are being made to make AI-powered education more accessible. As AI technology evolves, cost-effective solutions will emerge, enabling schools, especially those in underprivileged areas, to integrate AI tools without financial strain.

Collaboration between governments, private organizations, and educators will be key to achieving this. Emerging technologies like blockchain and IoT will further enhance digital learning environments. Blockchain can secure student records, ensuring transparency and data protection, while IoT-enabled smart classrooms will improve real-time tracking of student engagement and performance.

These innovations will strengthen the security and efficiency of AI-driven education. To fully harness AI's potential, addressing ethical concerns, affordability, and accessibility is crucial. By responsibly integrating AI alongside blockchain and IoT, the education system can become more inclusive, adaptive, and effective, preparing students for the demands of a rapidly evolving digital world.

By thoughtfully integrating AI with blockchain and IoT, the education system can evolve into a more inclusive, adaptable, and efficient ecosystem. Such integration can personalize learning experiences, ensure secure and transparent academic records, enable real-time performance tracking, and foster collaborative, tech-driven classrooms. This holistic approach not only enhances teaching and learning but also equips students with the skills, digital literacy, and problem-solving abilities needed to excel in an increasingly fast-paced and technology-driven world.

## CONCLUSION

AI is transforming education by providing personalized, engaging, and effective learning experiences. Through AI-powered tutoring systems, students receive customized instruction tailored to their individual learning pace, strengths, and weaknesses. Automated assessments enable quick and accurate evaluations, giving teachers valuable insights into student progress while reducing their workload. Additionally, AI enhances remote learning by offering interactive virtual classrooms, intelligent chatbots for student support, and adaptive learning platforms that adjust content based on individual needs. These advancements have significantly improved education delivery, making learning more accessible and efficient for students worldwide.

# TRANSFORMING LEARNING THROUGH INTELLIGENT TOOLS AND INTERACTIVE EXPERIENCES



SHUBHAM KAMBLE



SHREYAS KADAM



VIVEK KAMBLE

TECHNEXT 2025

# EXPLAINABLE AI (XAI)

~ ADARSH PATHAK AND VINIT PRAJAPATI



## INTRODUCTION:

Explainable AI refers to a set of techniques, principles, and processes designed to help both creators and users of AI systems better understand how these systems function and make decisions<sup>1</sup>. As artificial intelligence becomes more sophisticated, the need for explainability grows commensurately. XAI aims to provide clear explanations for why an AI model behaves in certain ways and how it arrives at specific decisions, addressing the fundamental opacity that characterizes many advanced AI systems.

The concept of XAI has gained prominence as AI systems increasingly influence critical aspects of human life. Without adequate explanations, AI algorithms operate as black boxes, taking inputs and producing outputs with no visibility into their inner workings. This lack of transparency poses significant challenges across various domains, particularly in high-stakes applications where decisions can profoundly impact individuals and society.

The importance of XAI extends beyond mere technical curiosity. As AI increasingly permeates critical fields like healthcare, finance, and legal services, the demand for transparency, accountability, and fairness grows substantially.

## THE BLACK BOX PROBLEM

The black box problem represents a fundamental challenge in modern AI systems. As models grow in complexity and sophistication, understanding their decision-making processes becomes increasingly difficult, even for the researchers and developers who create them. This opacity stems from several factors, including the high

dimensionality of data, non-linear relationships captured by models, and the sheer number of parameters in advanced architectures like deep neural networks.

## GOALS AND PRINCIPLES OF XAI

XAI seeks to explain one or more of the following aspects of AI systems: the data used to train the model (including selection rationale), the predictions made by the model (including specific factors considered), and the role of algorithms in the model's operation. By providing insights into these elements, XAI aims to make AI systems more transparent, interpretable, and accountable.

Several principles guide the development of explainable AI systems. These include transparency (ensuring stakeholders understand the model's decision-making process), fairness (ensuring decisions are equitable for everyone, including protected groups), trust (building confidence among human users), robustness (maintaining reliable performance even in uncertain situations), privacy (protecting sensitive user information), and interpretability (providing human-understandable explanations).

## DISTINGUISHING INTERPRETABILITY FROM EXPLAINABILITY

Interpretability describes how easily a human can understand why a machine learning model made a particular decision. It focuses on the intrinsic transparency of a model, allowing observers to directly trace the pathway from inputs to outputs. Interpretable models are typically simpler in structure, such as decision trees or linear regressions, where the relationship between features and all the

relationship between features and predictions is readily apparent.

Explainability, by contrast, refers to the ability to provide post-hoc explanations for model predictions, even when the underlying model itself might be complex or opaque. Explainability methods aim to shed light on black-box models by creating representations that help users understand which features influenced a prediction and how they contributed to the outcome, without necessarily revealing the complete internal workings of the model.

## APPLICATIONS OF XAI IN CRITICAL DOMAINS

The value of explainable AI becomes particularly evident in domains where decisions have significant consequences for individuals and society. In these critical applications, the ability to understand and trust AI systems is essential for responsible deployment.

### HEALTHCARE APPLICATIONS

In healthcare, AI systems increasingly support diagnostic processes, treatment planning, and patient monitoring. The opacity of traditional black-box models presents substantial challenges in this context, where clinicians must understand and trust system recommendations before applying them to patient care<sup>3</sup>.

Consider a scenario where an AI system suggests an atypical treatment plan for a patient with a complex medical condition. Physicians need to understand why the model drew certain conclusions from the data it analyzed—potentially including lab results, medical images, and patient demographics—to confidently incorporate these recommendations into clinical decision making<sup>3</sup>.

XAI approaches in healthcare enable interpretable disease diagnosis models that not only predict conditions but also highlight relevant biomarkers or imaging features supporting the diagnosis.

### FINANCIAL SERVICES

The financial sector faces dual pressures for both high-performance predictive models and transparent decision processes. Regulatory requirements mandate that financial institutions justify decisions affecting customers, while competitive pressures demand accurate risk assessment and fraud detection<sup>2</sup>.

XAI applications in finance include credit scoring models that explain which factors influenced approval decisions, helping applicants understand how to improve their financial standing<sup>2</sup>.

### CONCLUSION

Explainable AI addresses the critical black-box problem by enhancing the interpretability and transparency of AI models, enabling stakeholders to understand, trust, and effectively utilize AI-driven decisions. By bridging the gap between complex algorithms and human comprehension, explainable AI ensures ethical, accountable, and reliable applications across diverse domains. Its growing adoption not only improves decision-making quality but also fosters user confidence, paving the way for responsible and sustainable AI integration in real-world scenarios.

# EXPLAINABLE AI (XAI)



ADARSH PATHAK



VINIT PRAJAPATI

TECHNEXT 2024

# TRACK & BOOK

~ KETAN SARNOBAT, SHIVANGI PRAJAPATI, NIKITA SAWANT



## INTRODUCTION:

The Track and Book website is an innovative solution designed to tackle the growing challenges of urban transportation. In cities plagued by traffic congestion, unpredictable travel times, and overcrowded public transport systems, commuting has become increasingly difficult and stressful for residents. Track and Book offers a smart and efficient way to navigate these issues by providing real-time tracking for bus, magic and a user-friendly booking system for magic. With our platform, users can monitor the location of their transport options in real-time, allowing them to plan their journeys more effectively and avoid unnecessary delays. We leverage API updates to ensure that users have access to accurate information on travel times, vehicle availability, and optimal routes. This helps reduce the uncertainty associated with public transport and promotes a more organized and reliable commuting experience.

## PUBLIC TRANSPORTATION CHALLENGES

Public transportation in developing countries faces significant challenges that impact both commuters and operators. Unreliable arrival times create uncertainty for passengers due to inconsistent schedules, unpredictable traffic congestion, and a lack of real-time updates, often resulting in long wait times and missed connections. Overcrowding issues during peak hours lead to passenger discomfort, safety concerns, and inefficient utilization of available transport resources, as some buses and magic remain underutilized while others operate beyond capacity. Inefficient seat management further complicates the commuting experience, with passengers struggling to secure seats, often leading to last-minute rushes, standing journeys, and dissatisfaction. Without a structured booking system, travellers lack visibility into seat availability, discouraging them from opting for

public transport. Additionally, passenger inconvenience is heightened by the absence of accurate arrival predictions, making it difficult to plan commutes efficiently, resulting in wasted time and frustration. Lastly, the driver-passenger communication gap limits effective coordination, as passengers have no direct way to receive updates on delays, seat availability, or unexpected route changes, leaving them reliant on guesswork.

## KEY SYSTEM FEATURES

The Track & Book website is a smart, technology-driven solution designed to modernize public transportation by addressing key challenges such as unreliable arrival times, overcrowding, and inefficient seat management. One of its most crucial features is real-time vehicle tracking, which provides passengers with live updates on the location and estimated arrival time of buses and magic, enabling them to plan their journeys more efficiently and reduce long waiting periods at stops. To further enhance the commuting experience, the system includes seat availability management, allowing users to check the number of available seats in a vehicle before system boarding, ensuring better distribution

## PERFORMANCE AND EFFICIENCY

The website is built with a strong emphasis on performance and efficiency, ensuring a smooth and responsive user experience while handling real-time transportation data. At its core, the system is powered by a fast API response time, enabling users to receive instant updates on bus and magic locations, seat availability, and booking confirmations without noticeable delays. The architecture is designed to support low latency for real-time updates, ensuring that vehicle tracking and seat reservations are processed within milliseconds.

## USER EXPERIENCE AND DESIGN

The Track & Book website is designed with a strong focus on user experience and design, ensuring seamless interaction for both passengers and drivers. At the heart of the system is an intuitive passenger interface, which provides a smooth and hassle-free navigation experience, allowing users to easily check real-time bus and magic locations, view seat availability, and book their seats with minimal effort. The design prioritizes accessibility, ensuring that commuters of all backgrounds can efficiently use the platform without technical difficulties for drivers. The system features a simple driver dashboard that offers an easy-to-use interface for managing trip details, updating seat availability, and tracking passenger bookings. The dashboard is designed to minimize distractions while ensuring that drivers can update trip information quickly and accurately. To enhance transparency and efficiency, the platform includes clear seat status indicators, providing real-time visibility into seat availability for each vehicle. Passengers can instantly see whether seats are open, booked, or reserved, allowing them to make quick and informed decisions when planning their trips. Real-time notifications play a crucial role in improving user engagement by keeping passengers updated on vehicle arrivals, seat booking confirmations, and schedule changes. These instant alerts reduce uncertainty and ensure that users are always informed, making their commute more predictable and stress-free. By integrating these design principles, Track & Book delivers a user-friendly, visually appealing, and highly functional platform that enhances convenience, efficiency, and overall satisfaction for both passengers and transport operators.

## TECHNOLOGY AND TOOLS

The Track & Book website is built using a robust technology stack that ensures seamless real-

time tracking, efficient data management, robust technology stack that ensures seamless real-time tracking, efficient data management real-time tracking, efficient data management and a user-friendly experience. The frontend is developed using HTML5, CSS3, and JavaScript, providing a responsive and intuitive interface for both passengers and drivers. On the backend, the system leverages Node.js and Express.js, ensuring a scalable and high-performance architecture capable of handling multiple user requests efficiently.

## CHALLENGES AND FUTURE DIRECTIONS

### CHALLENGES

Existing transport and booking systems face several challenges that impact their efficiency and user experience. One major limitation is the lack of customization, as most systems operate on fixed routes and schedules, offering little flexibility for users who require dynamic or on-demand services. Additionally, arrival time predictions are often inaccurate due to factors like traffic congestion, weather conditions, and road incidents, leading to delays and frustration. A significant dependency on GPS and internet connectivity further compounds these issues, as areas with poor network coverage, such as tunnels or rural locations, can disrupt real-time.

Tracking and navigation, causing confusion for users and inefficiencies for service providers. Scalability is another critical concern, as growing urban populations lead to increased data processing demands, and many systems struggle to handle large volumes of real-time data efficiently, resulting in performance degradation. Moreover, continuous GPS tracking and internet usage contribute to high battery and data consumption on mobile devices, making it inconvenient and costly for users with limited resources. Security and privacy risks also pose serious challenges, as these

systems collect and store user location data, making them vulnerable to cyber threats such as hacking and data breaches necessitating strong encryption and security measures.

Lastly, integration with older transport infrastructure remains a significant hurdle, as differences in data formats, technology standards, and operational procedures make it difficult to ensure seamless communication between new and existing systems. Addressing these issues requires the implementation of adaptive algorithms, scalable infrastructure, optimized power consumption strategies, and robust security frameworks to create a more efficient and reliable public transportation system.

## FUTURE DIRECTIONS

**Future Direction of the Track & Book Website**  
As urban transportation continues to evolve, the Track & Book website aims to integrate advanced features that enhance efficiency, convenience, and reliability. One of the key future developments is Predictive ETA (Estimated Time of Arrival), leveraging historical traffic patterns, live GPS tracking, and machine learning to provide highly accurate arrival predictions, helping commuters plan their journeys with greater precision. To further improve user convenience, payment integration will be introduced, enabling passengers to book seats and pay for their rides directly through the platform using digital wallets, credit/debit cards, or mobile payment options. This will streamline the booking process and reduce the hassle of carrying cash or making last-minute payments.

Recognizing the challenges posed by unreliable network connectivity, the system will incorporate offline tracking for weak networks, ensuring that passengers and drivers can still access essential features such as vehicle location updates and seat bookings even in areas with limited internet access.

## CONCLUSION

The Track & Book website is a transformative solution aimed at modernizing urban public transportation by integrating real-time tracking, seat booking, and intelligent data-driven features. By addressing key challenges such as unreliable arrival times, overcrowding, inefficient seat management, and communication gaps, the platform enhances efficiency, convenience, and user satisfaction. Its intuitive interface ensures accessibility for passengers and drivers, while advanced performance optimizations guarantee seamless operation with minimal latency. Looking ahead, Track & Book envisions incorporating predictive ETA, AI-driven route optimization, payment integration, and enhanced traffic analytics to further improve urban mobility. By leveraging cutting-edge technology, the platform aspires to create a smarter, more efficient, and commuter-friendly public transport system, ultimately reducing congestion, improving travel reliability, and promoting greater adoption of public transportation in cities worldwide.

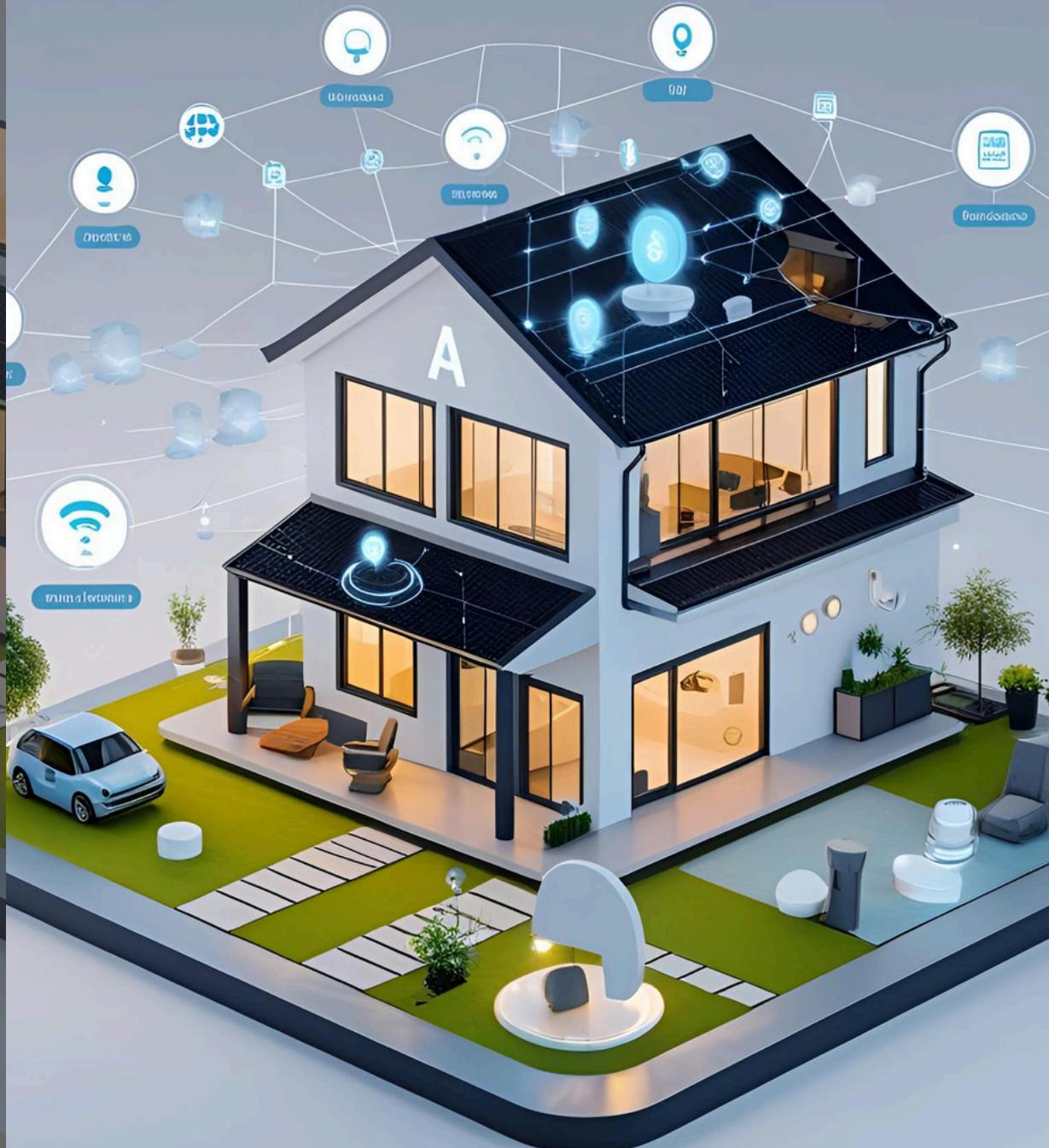
# TRACK & BOOK



KETAN SARNOBAT



SHIVANGI PRAJAPATI




NIKITA SAWANT

# TECHNEXT 2025

## AI-POWERED SMART HOMES & AUTOMATION

~ DEVANSH BHATT, ADARSH TIWARI, VINEET SONI



## INTRODUCTION:

The idea of clever homes has developed notably over the last few a long time, moving from simple programmable devices to notably shrewd, interconnected ecosystems driven via artificial Intelligence (AI). to start with, domestic automation turned into limited to fundamental systems like programmable thermostats and far flung-controlled lighting fixtures. but, with the rapid improvements in AI, the internet of things (IoT), and cloud computing, smart houses have turn out to be more state-of-the-art, providing users extraordinary stages of convenience, electricity efficiency, and protection.

## Driven Technology in Smart Homes:

### AI-Powered Voice Assistants

Examples: Amazon Alexa, Google Assistant, Apple Siri.

Enable hands-free control of smart devices.

Use Natural Language Processing (NLP) to interpret commands, set reminders, control lights, and manage home security.

Become more intuitive over time using deep learning for better speech recognition and personalized responses.

Future improvements: better contextual understanding and emotional intelligence for more interactive experiences.

### Predictive Energy Management

AI optimizes energy consumption by analyzing usage patterns and adjusting heating, cooling, and lighting.

Examples: Smart thermostats like Nest and Ecobee.

Reduce energy waste and utility bills.

Integrate renewable energy sources like solar panels.

Real-time monitoring and predictive algorithms help refine energy control, reduce carbon footprints, and promote sustainability.

Future: AI-enabled homes communicating with smart grids for optimized power distribution and storage.

### Smart Security Systems

Real-time facial recognition, anomaly detection, and smart surveillance.

AI-driven cameras and motion sensors improve threat detection.

Integrates with mobile apps for remote monitoring and alerts.

Includes behavioral analytics to detect unusual activities and trigger automated responses.

Uses biometric authentication (retina, fingerprint scanning) for added security.

Future focus: enhanced privacy measures, better accuracy, and faster response times.

### Smart Appliances & IoT Integration

Examples: AI-powered smart refrigerators, washing machines, robotic vacuum cleaners.

Automate household tasks and improve efficiency.

Devices communicate over IoT networks for centralized control via smartphones or voice commands.

AI-driven kitchens can suggest recipes, adjust cooking settings, track food expiration.

Robotic assistants may handle more complex chores and provide elderly companionship.

Seamless IoT integration for a more adaptive and intelligent home experience.

## Challenges in AI-Powered Smart Homes

### Data Privacy and Security Risks

High volume of sensitive data (location, habits, health information, voice/video recordings) collected continuously makes smart homes attractive targets for hackers.

Risks include:

Unauthorized surveillance – hacking cameras or microphones.

Identity theft – stealing personal credentials and biometric data.

Financial fraud – exploiting stored payment details linked to smart devices.

Data misuse – selling user behavior data without consent.

Vulnerabilities can occur due to outdated firmware, weak passwords, or poor network security.

**Solutions:**

Use end-to-end encryption for data in transit and at rest.

Employ multi-factor authentication for device access.

Deploy AI-powered intrusion detection to identify unusual network activity.

Regular security patches and automatic updates for all devices.

**Government role:**

Enforce stringent privacy laws and cybersecurity standards.

Ensure compliance audits for smart home manufacturers.

## Interoperability Issues

Diverse ecosystem of smart home devices from different manufacturers often results in compatibility problems.

Proprietary protocols and closed ecosystems limit communication between devices.

Without seamless integration, users face inconvenience and reduced automation efficiency.

**Need for:**

Standardized communication protocols like Matter, Zigbee, or Z-Wave.

Open APIs to allow cross-platform interaction. Collaborative industry efforts to create universal connectivity standards.

AI-driven middleware solutions can act as a "translator" between incompatible systems, enabling centralized control and smooth device interaction.

## High Implementation Costs

Initial setup involves expensive hardware, smart appliances, networking equipment, and professional installation.

Costs also include software licenses, cloud storage, and maintenance.

Advanced AI features require high-performance hardware, increasing the price.

To reduce costs:

Improve manufacturing efficiency and adopt mass production to lower unit costs.

Encourage healthy competition among providers.

Offer government subsidies or tax incentives for smart home adoption.

Promote modular upgrades instead of complete overhauls, allowing gradual adoption.

## Benefits of AI in Smart Homes

### Enhanced Comfort & Convenience

AI learns user habits to automatically adjust temperature, lighting, and entertainment for maximum comfort.

Multiple control methods: mobile apps, voice commands, gesture recognition, and automated schedules.

Personalized home environments (e.g., setting mood lighting for relaxation or energizing light for mornings).

Integration with location-based services to prepare the home before the user arrives.

### Energy Efficiency

Smart thermostats and lighting systems adapt to occupancy and weather patterns.

AI predicts peak energy usage times and optimizes appliance operation to save costs.

Integrates renewable energy sources (solar panels, wind turbines) for sustainable living.

Reduces phantom power usage by turning off idle devices.

## Improved Security

Real-time facial recognition and motion detection identify intruders instantly. Behavioral pattern analysis alerts owners to suspicious activities. Automated emergency responses such as locking doors or triggering alarms. Remote monitoring via smartphones for 24/7 surveillance. Integration with emergency services for faster response.

## Advanced Accessibility

AI enables voice-activated home control for individuals with mobility or vision impairments. Smart wheelchairs integrated with home automation for easier navigation. Home assistance robots help with daily tasks (cleaning, fetching items, reminders). Customizable accessibility features for elderly care, including fall detection and health monitoring.

## Predictive Maintenance

Constant monitoring of devices to detect wear and tear before failure. Notifications and automated scheduling for repairs and servicing. Minimizes costly breakdowns by preventing small issues from becoming major problems. AI can estimate remaining useful life (RUL) of devices for better budget planning.

## Environmental Sustainability

AI optimizes heating, cooling, water use, and lighting to minimize environmental impact. Smart irrigation systems adjust watering schedules based on soil conditions and weather forecasts. Encourages green energy adoption by maximizing solar and wind power usage. Helps achieve net-zero energy goals in smart cities.

## CONCLUSION

AI-powered smart homes are transforming modern living by offering comfort, security, and energy efficiency through AI, IoT, and predictive analytics. They adapt to user preferences, automate tasks, and improve overall efficiency. Key technologies include voice assistants, smart security, and predictive maintenance. However, challenges like data privacy, cybersecurity, interoperability, and high costs must be addressed with strong encryption, standardization, and affordable solutions. Future research should focus on AI ethics, regulations, and security. With innovation and proper safeguards, AI-driven homes can become a core part of smart cities, promoting sustainability and enhancing quality of life.

# AI-POWERED SMART HOMES & AUTOMATION



DEVANSH BHATT



ADARSH TIWARI



VINEET SONI

# EVOLUTION AUTONOMOUS MOBILE ROBOT

~ VAISHNAVI DUBEY, DISHA SONIGRA, ABHINAV YADAV

TECHNEXT 2025



## INTRODUCTION

**Definition:** Autonomous Mobile Robots (AMRs) are robots capable of navigating and performing tasks in dynamic environments without direct human control. Difference from traditional robots: Unlike Automated Guided Vehicles (AGVs) that follow fixed paths, AMRs use AI, machine learning, sensor fusion, and SLAM for independent decision-making.

**Capabilities:** Detect obstacles, process data in real time, adapt to changing environments.

**Applications:** Logistics, healthcare, autonomous vehicles, military operations.

**Challenges:** Energy efficiency, ethical concerns, regulatory frameworks.

**Future:** Integration of quantum computing, swarm robotics, cognitive AI to enhance autonomy and collaboration.

## HISTORY OF AUTONOMOUS ROBOTS

**Early Foundations: 1950s–1970s**

**Shakey the Robot (1966–1972)** – First mobile robot able to perceive and reason about its environment using basic AI and sensors.

**Stanford Cart (1970s)** – Used stereo vision-based navigation for obstacle avoidance.

**Rule-Based and Reactive Robotics: 1980s–1990s**

**Subsumption Architecture (1986)** – Rodney Brooks' model allowing robots to react dynamically via layered sensor inputs.

**SLAM (Simultaneous Localization and Mapping)** introduced in late 1980s–1990s, enabling mapping while tracking position.

**NASA's Mars Pathfinder (1997)** – Showed autonomous navigation beyond Earth using stereo cameras and AI.

**AI and Advanced Sensing: 2000s–2010s**

Refined SLAM with LIDAR, RGB-D cameras, and sensor fusion.

**iRobot Roomba (2002)** – Brought household AMRs into the consumer market.

**Boston Dynamics' BigDog (2005) and Spot (2016)** – Highly mobile robots for complex terrains.

**DARPA Grand Challenge (2004–2007)** – Accelerated autonomous vehicle development.

**Amazon Robotics (2012)** – Revolutionized warehouse automation.

**AI-Driven Robotics and Future Trends: 2020s and Beyond**

**Deep Learning & Reinforcement Learning** – Real-time object recognition, path planning, decision-making.

**Tesla FSD & Waymo taxis** – AI-based real-world navigation.

**Swarm Robotics** – Cooperative multi-robot systems for warehouses, rescue missions.

**Quantum Computing integration** – Potential for massive data processing and smarter decision-making.

## TYPES AND TECHNOLOGIES

### Types of AMRs

**Wheeled** – Fast, efficient for flat environments; used in warehouses and factories (e.g., Amazon Kiva robots).

**Legged** – Mimic human/animal movement; for rough terrains (e.g., Boston Dynamics Spot, MIT Mini Cheetah).

**Aerial (UAVs)** – Drones for surveillance, mapping, delivery (e.g., DJI drones, Amazon Prime Air).

**Marine (AUVs)** – Underwater robots for exploration and inspection (e.g., Bluefin-21, Echo Voyager).

**Swarm Robotics** – Multiple robots working collectively, inspired by insect colonies (e.g., NASA Mars Swarm).

### Key Technologies

**Sensor Fusion** – Combines data from LIDAR, cameras, radar, GPS for better perception.

**SLAM** – Builds maps while locating itself in real time.

**GPS & RTK-GPS** – High-accuracy outdoor navigation.

## APPLICATION OF SRMs

### Logistics & Warehouses

AMRs automate goods transport, inventory management, and order fulfillment, reducing human labor and increasing accuracy.

In warehouses like Amazon's, AMRs navigate aisles autonomously, avoid obstacles, and coordinate with conveyor belts and shelving units.

**Benefits:** Faster delivery times, reduced operational costs, and higher productivity.

**Example:** Amazon Kiva robots move thousands of products daily between storage shelves and packing stations.

### Autonomous Vehicles

Includes self-driving taxis, buses, delivery robots, and autonomous trucks for goods and passenger transport.

Equipped with AI-based navigation systems, LIDAR, and GPS for safe driving in dynamic traffic conditions.

**Example:** Tesla's Full Self-Driving (FSD) and Waymo's autonomous taxis offer urban transportation without human drivers.

**Benefits:** Reduces human driver fatigue, lowers accident rates, and enables 24/7 operations.

### Agriculture

AMRs revolutionize farming by planting, watering, spraying pesticides, harvesting crops, and monitoring fields using drones.

Equipped with computer vision to detect plant diseases early and perform targeted treatments.

**Example:** Drones in precision agriculture create aerial maps for irrigation planning and crop health monitoring.

**Benefits:** Higher crop yields, reduced pesticide usage, and cost-effective farming.

### Space & Underwater Exploration

AMRs operate in environments that are dangerous or inaccessible to humans.

**Space:** Planetary rovers like NASA's Perseverance use SLAM and AI to navigate rocky terrains and collect samples.

## IMPACT OF AMRs ON INDUSTRIES

### Global Adoption Leaders

United States (40%) – World leader in robotics, with companies like Amazon, Tesla, and Boston Dynamics using AMRs in warehouses, healthcare, and military operations. Heavy investments in AI-powered robots for industrial and public service automation.

Germany (8%) – Focused on Industry 4.0, using AMRs in smart factories to automate assembly lines, improve product quality, and minimize errors. Companies like BMW and Volkswagen use AMRs in car manufacturing.

Japan (6%) – Leading in service robots and industrial automation. AMRs are used for elderly care, disaster relief, and manufacturing. Companies like Toyota, Honda, and SoftBank develop advanced humanoid and service robots.

China (5%) – Rapid AMR adoption in e-commerce, logistics, and smart manufacturing. Alibaba and JD.com operate fully automated warehouses with fleets of delivery robots. Government-backed initiatives promote smart city robotics.

UK, Canada, France, South Korea, Switzerland – UK – Retail and grocery automation (e.g., Ocado's robotic fulfillment).

Canada – AMRs in mining, agriculture, and logistics.

France – AI-powered robotics in pharmaceuticals, aerospace, and healthcare.

South Korea – Electronics manufacturing, autonomous vehicles, and smart city services.

Switzerland – Precision robotics in medical and banking sectors.

## FUTURE SCOPE OF AMRs

Industry Expansion – AMRs will be increasingly used in manufacturing, logistics, healthcare, agriculture, defense, and smart city infrastructure.

5G and Cloud Integration – High-speed networks and cloud robotics will enable real-time decision-making, fleet coordination, and remote operation.

Advanced SLAM and Sensors – Future AMRs will navigate complex, unpredictable environments like disaster zones or crowded cities more efficiently.

Market Growth – Current value \$4.6 billion (2023) → projected \$14.48 billion (2033) at 15.4% CAGR.

Emerging Trends – Swarm robotics for large-scale coordination, AI-driven emotional intelligence in service robots, and quantum computing for faster decision-making.

## CONCLUSION

Autonomous Mobile Robots (AMRs) have progressed remarkably, evolving from simple navigation machines into advanced AI-driven systems capable of real-time decision-making and adaptive behavior. Their integration into industries has transformed operations by significantly enhancing speed, safety, accuracy, and efficiency. From warehouses and manufacturing floors to hospitals and agricultural fields, AMRs are reducing human workload, minimizing errors, and enabling around-the-clock productivity.

Leading innovators such as Boston Dynamics, Tesla, and Amazon Robotics continue to push the boundaries of what AMRs can achieve, developing robots that are more mobile, intelligent, and capable of operating in increasingly complex environments. With rapid advancements in artificial intelligence, deep learning, and sensor technologies, the scope for AMRs will only expand further, opening up new opportunities in emerging sectors like smart cities, disaster management, and space exploration.

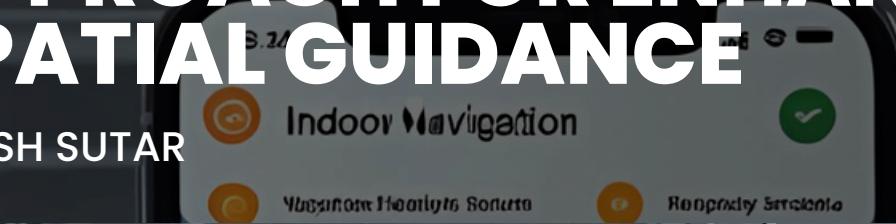
# EVOLUTION AUTONOMOUS MOBILE ROBOT



VAISHNAVI DUBEY



DISHA SONIGRA




ABHINAV MISHRA

TECHNEXT 2025

# AUGMENTED REALITY-BASED INDOOR NAVIGATION: A TECHNOLOGICAL APPROACH FOR ENHANCED SPATIAL GUIDANCE

~ KUSH SUTAR



## INTRODUCTION

Indoor navigation remains a major challenge because GPS signals weaken inside buildings, making location tracking inaccurate. This limits the usefulness of traditional methods like maps and signboards, which can be hard to interpret, outdated, or inaccessible for people with disabilities. Augmented Reality (AR)-based navigation offers a transformative solution by overlaying digital guidance elements—such as arrows, markers, and signs—directly onto the real-world view through smartphones, AR glasses, or tablets. These systems combine technologies like ARKit/ARCore for scene understanding, LiDAR for precise mapping, QR codes for localization, and SLAM algorithms for dynamic position updates, all without relying on Wi-Fi or beacons. Operating entirely on-device, AR navigation is reliable, cost-effective, and usable even offline. With rapid advances in AI-driven spatial computing, upcoming features like predictive routing, gesture-based controls, and integration with wearable devices are expected to make indoor navigation more intuitive, interactive, and universally accessible.

## TECHNOLOGIES USED IN AR-BASED INDOOR NAVIGATION

AR-based indoor navigation combines hardware and software for real-time guidance.

**AR Development Kits:** ARKit (Apple) uses LiDAR, motion tracking, and scene understanding; ARCore (Google) provides spatial tracking and environmental understanding; AR Foundation (Unity) supports cross-platform development.

**Indoor Positioning:** QR codes/markers locate users; LiDAR and depth sensors create 3D maps; Bluetooth beacons and Wi-Fi triangulation enhance accuracy.

**Pathfinding:** Algorithms like A\*, Dijkstra's, and Floyd-Warshall find optimal routes and enable dynamic rerouting.

## SYSTEM ARCHITECTURE

An AR-based indoor navigation system has four main layers:

**Data Acquisition:** Collects spatial data via QR codes, beacons, or LiDAR scanning.

**Localization & Mapping:** Uses SLAM with AR markers and depth sensors to pinpoint the user's position.

**Path Planning & AR Overlay:** Calculates optimal routes (A\*, Dijkstra's) and overlays them as arrows, signs, or highlighted paths.

**User Interaction:** Lets users set destinations, scan QR codes, and receive real-time route updates through an intuitive AR interface.

## IMPLEMENTATION METHODOLOGY

Steps in Developing AR-Based Indoor Navigation:

**Environment Mapping & QR Placement:** The process starts with scanning the indoor area using LiDAR or placing QR codes at strategic spots like entrances, corridors, and intersections. Each QR code contains location data that helps the AR system pinpoint the user's position.

**Path Generation & Navigation Logic:** Using the mapped data, the system creates a digital layout of the environment. Pathfinding algorithms, such as A\* or Dijkstra's, determine the shortest or most accessible routes, updating dynamically when obstacles or user movement changes occur.

**AR Visualization & Rendering:** The chosen route is displayed as AR guidance cues—directional arrows, virtual signs, and markers—superimposed on the user's real-world view through a smartphone or AR glasses.

**Real-Time User Interaction & Feedback:** Users select destinations, scan QR codes for location updates, and follow the AR instructions. The system provides live feedback, ensuring accurate, smooth navigation throughout the journey.

## CHALLENGES AND LIMITATIONS

**Accuracy & Tracking:** Factors like poor lighting, reflective surfaces, and visual obstructions can interfere with AR object placement and user tracking. Enhancements in LiDAR sensors and SLAM algorithms are essential for improving positioning precision.

**Scalability & Maintenance:** Implementing AR navigation in large or multiple facilities requires detailed mapping, ongoing updates to reflect layout changes, and regular calibration of markers and sensors—all of which demand significant time, labor, and costs.

**Device Compatibility & Performance:** The system's reliability depends heavily on hardware. High-end smartphones and AR glasses can handle real-time rendering and spatial processing efficiently, while budget devices may experience delays, reduced accuracy, or limited functionality.

## FUTURE PROSPECTS AND ENHANCEMENTS

AR-based indoor navigation is an evolving field with significant potential for future advancements. Emerging trends include:

**AI-Driven Navigation:** Integrating artificial intelligence (AI) for predictive navigation and automatic route optimization based on real-time user behavior.

**5G Integration:** Faster data transmission with 5G will enhance real-time AR rendering and reduce latency in indoor navigation.

**Wearable AR Devices:** The rise of AR glasses and head-mounted displays (HMDs) will make indoor navigation hands-free and more immersive.

**Multi-Sensor Fusion:** Combining multiple positioning technologies such as LiDAR, BLE, and computer vision will further improve navigation accuracy and reliability.

## CONCLUSION

AR-based indoor navigation represents a breakthrough in location-based services, addressing the limitations of traditional GPS-based systems in enclosed spaces. By leveraging AR visualization, QR code-based positioning, and advanced pathfinding algorithms, this technology enhances wayfinding efficiency and user experience. Despite challenges related to accuracy, scalability, and hardware requirements, continuous advancements in AR and AI will pave the way for more robust and seamless indoor navigation solutions. As technology progresses, AR-based navigation is set to become a standard feature in modern smart environments, transforming how people navigate complex indoor spaces.

# AUGMENTED REALITY-BASED INDOOR NAVIGATION: A TECHNOLOGICAL APPROACH FOR ENHANCED SPATIAL GUIDANCE



KUSH SUTAR

TECHNEXT 2025

# INTERPRETABILITY OF LLMS: UNDERSTANDING DECISION- MAKING PROCESSES

~ SIDDHARTH MISHRA, PARESH KUDTARKAR, NANDINI NIWATE



## INTRODUCTION

Large Language Models (LLMs) have transformed natural language processing, exhibiting impressive abilities in tasks from text generation to sophisticated reasoning. Their black-box nature, though, poses enormous challenges to understanding how they come to produce certain outputs. Interpretability of LLMs has become an essential area of research, with the aim of creating techniques to comprehend and explain the decision-making processes in these intricate models. This work discusses the existing state of LLM interpretability, discussing numerous methods, obstacles, and areas of future development in rendering such influential models transparent and reliable. The demand for interpretable AI systems has been growing as LLMs are being used in high-stakes applications like healthcare, finance, and legal contexts. It is important to understand how these models arrive at decisions not only for detecting and correcting biases but also for establishing users' trust and responsible deployment. This paper gives an in-depth overview of the state-of-the-art methods to LLM interpretability, their uses, and the ethical aspects of their usage.

## BACKGROUND AND FUNDAMENTALS

**Evolution of LLM Architectures:** Modern LLMs are built on the Transformer architecture, introduced in Attention is All You Need, which uses attention mechanisms instead of recurrence or convolutions. This design enables faster, more parallelized training and superior performance. Attention allows models to weigh the importance of different input segments, driving their success across sequence-processing tasks.

**The Need for Interpretability:** As LLMs grow more capable, understanding their reasoning is critical for trust, bias detection, debugging, and regulatory compliance. Explainable AI (XAI) for LLMs aims to reveal internal workings but also to improve model performance.

## INTERPRETABILITY TECHNIQUES FOR LLMs

**Attention Mechanisms:** Attention reveals which input tokens a model focuses on, but complex interactions between heads and layers limit direct interpretability, and patterns may not match human intuition.

**Feature Importance:** Methods like permutation importance mask words to measure their effect on outputs, working without attention weights and supporting flexible evaluation metrics.

**Layer-Wise Relevance Propagation (LRP):** Tracks contributions of inputs through the network; AttnLRP adapts this for transformers with low computational cost, and enhanced versions focus on key attention heads, improving explanation quality.

**Latent Representation Analysis:** Includes Sparse Autoencoders for feature discovery, vocabulary-defined semantics for interpretable spaces, and using LLMs to convert embeddings into human-readable explanations.

**Concept-Based Explanations:** Identify high-level concepts influencing outputs. Examples include Text Bottleneck Models, Concept Bottleneck LLMs for interpretable neurons, and multimodal concept discovery linking visual and textual data.

## APPLICATION OF INTERPRETABILITY TECHNIQUES

Interpretability plays a crucial role in multiple LLM applications. In bias detection and mitigation, it enables identifying and addressing societal biases inherited from training data through methods like self-reflection prompts, multi-role debate scenarios, bias detection tools, and counterfactual data augmentation to break stereotypes. In sentiment analysis, it enhances model reliability in complex cases, supports better comprehension of nuanced emotions, and promotes realistic evaluation frameworks such as SentiEval. In question

answering, interpretability can forecast potential errors, explain model reasoning, and improve factual recall by showing how attention heads extract relevant entities and MLP layers refine answers.

Ethical considerations center on trust, which is built through transparent and accountable model behavior; public perception, which is shaped by awareness of both AI's benefits and its risks; and responsible AI practices, including bias mitigation, privacy safeguards, transparency measures, and ethical frameworks to guide development and deployment.

## CHALLENGES, REGULATORY LANDSCAPE & FUTURE DIRECTIONS

LLM interpretability faces key hurdles: the trade-off between complexity and transparency, lack of standardized evaluation metrics, high computational cost, difficulty aligning explanations with human judgment, and limited generalizability across tasks. Promising solutions include integrating interpretability into model design, expanding methods to multimodal systems, enabling interactive explanations, exploring causal reasoning, and developing standardized benchmarks.

Regulatory frameworks for AI are still evolving, especially in high-risk domains like healthcare. While no single AI-specific regulator exists in some regions, agencies apply existing laws to software and algorithms, creating varied compliance requirements. Strong interpretability will be essential to meet future regulations on transparency, fairness, and accountability.

Future research aims to leverage LLMs for their own interpretability, balance plausibility with faithfulness in explanations, design inherently interpretable architectures like Concept Bottleneck Models, and advance multimodal interpretability to reveal how models process and integrate diverse inputs.

## ADVANCING INTERPRETABILITY RESEARCH

A key future direction is leveraging LLMs themselves as tools for interpretability, using them to analyze datasets, explain patterns, and even audit other LLMs. This approach offers scalability and the possibility of interactive explanations, but it also introduces risks—such as hallucinated reasoning or explanations that sound convincing but fail to reflect the true decision-making process. Mitigating these risks requires methods that ensure generated explanations remain faithful to the model's internal logic.

Improving the faithfulness of explanations is a major priority. While many current systems produce outputs that are plausible and easy for humans to understand, these explanations may not match the actual reasoning steps of the model. In high-stakes applications like healthcare or legal decision-making, plausibility without faithfulness can be dangerous. Future work must strike a balance between user-friendliness and truthfulness, supported by systematic methods for evaluating this trade-off.

Integrated interpretability approaches—such as Concept Bottleneck Models—offer another path forward by embedding transparency directly into the model architecture. These models contain interpretable neurons linked to specific concepts, enabling detection, explanation, and even controlled text generation without relying solely on post-hoc analysis. Such designs can address the long-standing trade-off between performance and interpretability.

As multimodal LLMs become more common, combining text, vision, and other inputs, researchers must also focus on multimodal interpretability. This involves uncovering how different types of information are processed and fused internally. Early methods like LVLM-Interpret, which integrates multiple

interpretability techniques for vision-language models, provide a promising starting point for revealing how models align visual and textual representations in their reasoning process.

## CONCLUSION

Interpretability of LLMs is vital for trust and responsible use. Despite progress with tools like attention visualizations and feature attribution, challenges remain: model complexity, performance-transparency trade-offs, lack of standards, and ethical issues such as bias, privacy, and security. Future work should focus on scalable, robust, user-driven methods balancing transparency with practical limits, supported by cross-disciplinary collaboration and rigorous benchmarks to ensure trustworthy, inclusive AI.

# INTERPRETABILITY OF LLMS: UNDERSTANDING DECISION- MAKING PROCESSES



SIDDHARTH MISHRA



PARESH KUDTARKAR



NANDINI NIWATE

TECHNEXT 2025

# REVOLUTIONIZING JOB APPLICATIONS: THE ROLE OF RESUME HUBS IN MODERN RECRUITMENT

~ ABHISHEK PANIKAR, SMIT PATIL, DAKSH PATIL



## INTRODUCTION

In the modern competitive job market, the process of applying for jobs has become increasingly complex and time-consuming for both job seekers and employers. Traditional job application processes often involve repetitive manual tasks, such as filling out similar information across multiple platforms, uploading documents, and tailoring resumes for different job postings. This redundancy not only consumes valuable time but also increases the likelihood of errors and inconsistencies.

On the other hand, employers face challenges in efficiently managing and processing a high volume of applications. Manually screening resumes, shortlisting candidates, and coordinating interviews can be labor-intensive and prone to bias, leading to potential delays in hiring decisions. These inefficiencies can hinder organizations from securing top talent quickly, impacting overall productivity and competitiveness.

Advancements in technology, particularly in artificial intelligence (AI) and automation, offer significant opportunities to streamline and optimize the job application process. By leveraging AI-powered tools, it is possible to automate repetitive tasks, enhance the accuracy of application data, and improve the overall experience for both job seekers and employers. Such innovations can lead to faster, fairer, and more efficient recruitment processes, ultimately benefiting all stakeholders involved.

## LITERATURE SURVEY

The integration of technology in recruitment processes has been widely explored in recent research. Studies have highlighted the potential of AI to revolutionize various stages of hiring, from candidate sourcing to onboarding. One significant advancement is the use of AI-driven Applicant Tracking Systems (ATS), which can automatically filter and rank candidates based on predefined criteria, thereby reducing the workload on human recruiters.

Research has also focused on the use of Natural Language Processing (NLP) techniques for parsing resumes and extracting relevant information, enabling more accurate matching between job descriptions and candidate profiles. Machine learning algorithms have been employed to predict candidate suitability and cultural fit, further enhancing the efficiency of the recruitment process.

Additionally, gamification and virtual reality (VR) have been introduced as innovative methods for assessing candidate skills and engagement levels. These tools provide interactive and immersive experiences that can better evaluate a candidate's problem-solving abilities, teamwork, and adaptability compared to traditional interview methods. Ethical considerations, such as reducing bias and ensuring transparency in AI-driven recruitment, have also been emphasized in the literature. Addressing these concerns is crucial for fostering trust among job seekers and ensuring fair hiring practices.

## PROBLEM DEFINITION

The traditional job application process is often inefficient, repetitive, and prone to human bias. Job seekers are required to repeatedly enter the same information across multiple platforms and tailor their applications for each position, consuming significant time and effort. Employers, on the other hand, face the challenge of managing large volumes of applications, which can lead to delays in screening and selection.

Furthermore, manual screening processes are susceptible to inconsistencies and unconscious biases, potentially resulting in the overlooking of qualified candidates. These inefficiencies not only slow down the hiring process but also affect the overall quality of recruitment outcomes. There is a clear need for an automated, intelligent system that can streamline the job application process for both applicants and employers while ensuring fairness, accuracy, and efficiency.

## OBJECTIVES

The primary objectives of this project are as follows:

1. To design and develop an AI-powered job application system that automates repetitive tasks for job seekers.
2. To enable seamless integration of resumes and application data across multiple platforms.
3. To implement intelligent matching algorithms for aligning candidate profiles with job descriptions.
4. To reduce bias and improve fairness in the recruitment process through objective data analysis.
5. To enhance the efficiency of recruitment for employers by automating candidate screening and shortlisting.

## METHODOLOGY

The development of the AI-powered job application system was approached in a systematic manner, ensuring that each stage addressed specific project requirements and contributed to the overall goal of streamlining the recruitment process. The methodology consists of the following stages:

### Requirement Analysis

Conducted detailed discussions and surveys with both job seekers and employers to identify common pain points in the current application process.

Documented repetitive tasks faced by applicants (e.g., multiple form submissions, repeated resume uploads) and operational bottlenecks faced by recruiters (e.g., manual shortlisting, slow candidate communication).

Established functional and non-functional requirements, including automation, fairness, accuracy, and cross-platform compatibility.

### System Design

Designed a modular architecture separating the AI engine, data management system, and

and user interface for scalability and maintainability. Created UML diagrams and process flowcharts to visualize interactions between components, such as how resumes are parsed, matched, and ranked.

Designed the user interface to prioritize ease of use, with intuitive dashboards for both applicants and employers.

### Data Collection and Preprocessing

Gathered a diverse dataset of resumes, cover letters, and job descriptions across multiple industries.

Applied preprocessing steps including tokenization, removal of stop words, standardizing formats (e.g., converting PDFs to structured text), and normalizing terms (e.g., synonyms for job titles).

Anonymized sensitive personal information to maintain data privacy while training the models.

### AI Model Development

Implemented Natural Language Processing (NLP) models to extract key entities (skills, education, work experience) from resumes and job descriptions.

Designed a matching algorithm that evaluates candidate-job compatibility based on weighted parameters like skill alignment, experience relevance, and cultural fit indicators.

Applied machine learning ranking models to prioritize candidates, incorporating bias mitigation strategies to ensure fairness.

### Integration

Connected the AI engine to the front-end user interface, ensuring real-time parsing and matching results.

Integrated with external platforms (e.g., LinkedIn, job boards) for automatic application submissions and profile updates.

Ensured system responsiveness across devices, including mobile and desktop applications.

## Testing and Validation

Conducted unit testing for individual modules, integration testing for component interactions, and system testing for end-to-end workflows.

Performed user acceptance testing (UAT) with a pilot group of employers and applicants to gather feedback on accuracy, usability, and speed.

Benchmarked the system's performance against traditional recruitment methods to measure efficiency gains.

## Deployment and Maintenance

Deployed the platform on a cloud-based environment for scalability and secure access. Established monitoring tools to track system performance, AI model accuracy, and user engagement.

## RESULTS AND DISCUSSION

The AI-powered job application system was successfully developed and deployed in a test environment. Initial testing showed a significant reduction in the time required for job seekers to complete applications, with automation eliminating redundant data entry. The intelligent matching algorithm demonstrated high accuracy in aligning candidate profiles with job descriptions, as confirmed by recruiter feedback.

Employers reported improved efficiency in shortlisting candidates, with the AI system providing ranked lists based on suitability. This allowed recruiters to focus on engaging with top candidates rather than manually filtering through large volumes of applications. The bias mitigation features also showed promise, with reduced instances of gender or age-related filtering compared to traditional screening methods.

User feedback indicated that the system's interface was intuitive and easy to navigate. Job seekers appreciated the ability to integrate their profiles across multiple platforms, while employers valued the comprehensive candidate insights generated by the AI engine.

Overall, the results suggest that the system can streamline recruitment, improve fairness, and enhance the experience for all stakeholders.

## CONCLUSION

The AI-powered job application system presented in this project addresses the inefficiencies and biases inherent in traditional recruitment processes. By automating repetitive tasks, enhancing candidate-job matching, and promoting fairness, the system benefits both job seekers and employers. The positive results from initial testing demonstrate the potential for such technology to revolutionize the hiring landscape.

Future work will focus on expanding the system's capabilities, such as integrating advanced analytics for predicting long-term candidate success, enhancing user personalization features, and ensuring compliance with evolving recruitment regulations. With continued development, AI-driven recruitment tools can play a pivotal role in creating more efficient, equitable, and transparent hiring processes.

# REVOLUTIONIZING JOB APPLICATIONS: THE ROLE OF RESUME HUBS IN MODERN RECRUITMENT



SMIT PATIL



ABHISHEK PANIKAR



DAKSH PATIL



**Innovation distinguishes  
between a leader and a  
follower.**

~ STEVE JOBS